There is renewed interest in unicondylar knee replacements (UKR) to meet the increasing demand for less invasive surgical procedures for knee arthroplasty. UKR survivorship exceeds 85% at 10 years, with unconstrained (round-on-flat) designs showing significantly better survivorship than conforming designs. However, round-on-flat articulation shave the potential for poor wear performance and more conforming, mobile-bearing UKR designs have been advocated. The purpose of this study was to evaluate the wear performance of unconstrained UKR polyethylene bearings retrieved at revision knee arthroplasty. Forty-two UKR (eight designs) were retrieved from 26 female and 16 male patients. Patient age averaged 73+10 (45–89) years and time in-situ averaged 7+4 (1–19) years. Revision reasons included loosening (45%), progressive osteoarthritis (17%), polyethylene wear (14%), instability (5%), and other (19%). Retrospective radiographic review of radiolucent lines and component alignment was completed. Polyethylene damage (severity score, 0–3) and location were measured using optical microscopy and digital image analysis. 81% of the polyethylene inserts had a concave deformation located on the central or posterior third of the articular surface, consistent with damage due to femoral component articulation. Abrasive damage on 29 (69%) inserts was consistent with impingement between the polyethylene and extra-articular cement or bone. There was delamination in the central region of 7 (17%) inserts and on the extreme posterior rim of 3 (7%) inserts. Severity score averaged 2.0+1.2 for abrasion and 0.5+1.0 for delamination. Radiographic component position was correlated with abrasive polyethylene damage. Despite initial tibiofemoral incongruity and concerns of high contact stress, round-on-flat UKR offers a durable knee arthroplasty. Delamination was infrequent and did not correlate with time in-situ. Rather, polyethylene cold flow increased the contact area during in-vivo function. Rigorous attention to cement technique and component position may reduce the incidence of abrasive damage on UKR polyethylene inserts.
There is renewed interest in unicondylar knee replacements (UKR) to meet the increasing demand for less invasive surgical procedures for knee arthroplasty. UKR survivorship exceeds 85% at 10 years, with unconstrained (round-on-flat) designs showing significantly better survivorship than conforming designs. However, round-on-flat articulations have the potential for poor wear performance and more conforming, mobile-bearing UKR designs have been advocated. This study evaluates the wear performance of unconstrained UKR polyethylene bearings retrieved at revision knee arthroplasty. Forty-two UKR with fixed polyethylene tibial bearings were retrieved. Patient age and time in-situ averaged 73 (45–89) years and 7 (1–19) years, respectively. All knees had intact cruciate ligaments at index surgery. Revision reasons included loosening (45%), progressive arthritis (17%), polyethylene wear (17%), instability (5%), and other (17%). Retrospective radiographic review of radiolucent lines and component alignment was completed using Knee Society guidelines. Polyethylene articular damage size (% of articular surface area), location and damage mode incidence were measured using microscopy and digital image analysis. Damage area was centrally located and averaged 65%+22%. The largest damage areas consisted of abrasion (19%) and scratching (17%). Revision for loosening or wear was significantly correlated with greater damage area (Spearman Correlation, p=0.049). The incidence of scratching, pitting and abrasion each exceeded 70%, including 29 inserts with peripheral abrasive damage consistent with impingement between the polyethylene and extra-articular cement or bone. Anterior damage location and abrasion were significantly correlated with component position (p<
0.001). Concave surface deformation due to femoral component contact was externally rotated (24 inserts), consistent with tibial external rotation relative to the femoral component, neutrally aligned (11 inserts), internally rotated (4 inserts), and indeterminate (3 inserts). Despite initial tibiofemoral incongruity and concerns of high contact stress, round-on-flat UKR offers a durable knee arthroplasty. The relatively unconstrained tibiofemoral articulations allowed freedom of placement on the resected bone surfaces and a range of tibio-femoral rotation during activity, as demonstrated by the rotated concave surface deformations. Such deformation may reduce polyethylene contact stresses by increasing the tibio-femoral contact area. However, similar to retrieved mobile bearing UKR which show a 63% incidence of impingement, abrasive damage on these fixed bearing UKR has consequences for polyethylene debris generation and the transmission of shear forces to the bone-implant interface. Rigorous attention to conventional and minimally invasive surgical technique, including cement fixation and component position, is needed to reduce the incidence of abrasive polyethylene damage.
Results: Major perioperative complications occurred in 7,26 per cent. Haematomas were reported in 3.22, cardiovascular complications in 1.55, joint infections in 0.94, injuries of neuro-vascular structures in 0,63, deep venous thrombosis in 0.37, pulmonary embolism in 0.26 and pneumonia in 0.28 per cent of all cases. Patient age, length of surgery and allogeneic blood transfusion significantly increased the rate of major perioperative complications. Increased patient age increased the risk for all major complications but neuro-vascular injuries. Increased surgery time elevated the risk for all major complications except haematoma. Allogeneic blood transfusions were associated with an elevated risk for all major postoperative complications except deep venous thrombosis. In contrast, autologous blood transfusions did not increase the risk for suffering a postoperative complication. Surprisingly, gender did not have a significant influence on the occurrence of immediate postoperative complications. Conclusions Allogeneic blood transfusion, increased age and surgery time contribute to an elevated incidence of perioperative complications following hip arthroplasty.
Early revision after total knee arthroplasty (TKA) is fortunately uncommon. However, instability and lack of fixation are common early failure mechanisms. Cement techniques utilizing lavage and multiple drill hole interdigitation of the resected tibial surface can reduce micromotion and produce reliable tibial component fixation. This study looks at clinical failure mechanisms, cement technique and polyethylene damage in patients needing early revision of cemented TKA. PCL-retaining TKA with cement fixation was performed on >
1000 patients at a single institution. Cement techniques varied with surgeon, with some using lavage and drill hole preparation of the resected surface and others electing to cement the surface “as cut”. Seventeen patients were revised within three years of follow-up. Revision reasons included loosening (41%), instability (18%), infection (24%), pain (12%), and malposition (6%). Prospective outcome scores, radiographic data, revision reasons, and polyethylene wear were compared. Pre-revision pain and function scores gradually decreased back to pre-operative levels. Leg alignment averaged 7° varus (nine patients) and 12° valgus (eight patients) pre-operatively and 5° valgus at pre-revision. Tibial radiolucent lines were present medially only in nine knees and medially and laterally in four knees. The majority of patients revised for loosening had a tibial component cemented onto the “as cut” bone without additional preparation. Damage covered 32%-85% of the polyethylene articular surface. Scratching and pitting were significantly correlated (p<
0.05) with shorter in-situ time and revision for instability and loosening. Alignment and outcome scores were not correlated with damage. In this series of cemented TKA, loosening and instability accounted for 59% of the early failure, similar to the incidence previously reported for cementless TKA. Cement technique and component positioning, not polyethylene wear, were the primary contributing factors. Attention to ligament balancing and achieving better tibial component fixation is needed to further limit the incidence of early failure after cemented TKA.