header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 187 - 187
1 Jul 2014
Moore S Saidel G Tate MK
Full Access

Summary Statement

A coupled finite element - analytical model is presented to predict and to elucidate a clinical healing scenario where bone regenerates in a critical-sized femoral defect, bounded by periosteum or a periosteum substitute implant and stabilised via an intramedullary nail.

Introduction

Bone regeneration and maintenance processes are intrinsically linked to mechanical environment. However, the cellular and subcellular mechanisms of mechanically-modulated bone (re-) generation are not fully understood. Recent studies with periosteum osteoprogenitor cells exhibit their mechanosensitivity in vitro and in situ. In addtion, while a variety of growth factors are implicated in bone healing processes, bone morphogenetic protein-2 (BMP-2) is recognised to be involved in all stages of bone regeneration. Furthermore, periosteal injuries heal predominantly via endochondral ossification mechanisms. With this background in mind, the current study aims to understand the role of mechanical environment on BMP-2 production and periosteally-mediated bone regeneration. The one-stage bone transport model [1] provides a clinically relevant experimental platform on which to model the mechanobiological process of periosteum-mediated bone regeneration in a critical-sized defect. Here we develop a model framework to study the cellular-, extracellular- and mechanically-modulated process of defect infilling, governed by the mechanically-modulated production of BMP-2 by osteoprogenitor cells located in the periosteum.