header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 62 - 62
1 Apr 2017
Inzana J Münch C Varga P Hofmann-Fliri L Südkamp N Windolf M
Full Access

Background

Osteoporotic fracture fixation in the proximal humerus remains a critical challenge. While the biomechanical benefits of screw augmentation with bone cement are established, minimising the cement volume may help control any risk of extravasation and reduce surgical procedure time. Previous experimental studies suggest that it may be sufficient to only augment the screws at the sites of the lowest bone quality. However, adequately testing this hypothesis in vitro is not feasible.

Methods

This study systematically evaluated the 64 possible strategies for augmenting six screws in the humeral head through finite element simulations to determine the relative biomechanical benefits of each augmentation strategy. Two subjects with varying levels of local bone mineral density were each modeled with a 2-part and 3-part fracture that was stabilised with a PHILOS plate. The biomechanical fixation was evaluated under physiological loads (muscle and joint reaction forces) that correspond to three different motions: 45 degrees abduction, 45 degrees abduction with 45 degrees internal rotation, and 45 degrees flexion.