header advert
Results 1 - 9 of 9
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2020
Dagneaux L Karl G Michel E Canovas F Rivière C
Full Access

Introduction

The constitutional knee anatomy in the coronal plane includes the distal femoral joint line obliquity (DFJLO) which in most patients is in slight valgus positioning. Despite this native anatomy, the mechanical positioning of the femoral component during primary total knee arthroplasty (TKA) often ignores the native DFJLO opting to place the femur in a set degree of valgus that varies upon the practitioner's practice and experience. Unfortunately, this technique is likely to generate high rate of distal lateral femoral overstuffing. This anatomical mismatch might be a cause of anterior knee pain and therefore partly explain the adverse functional outcomes of mechanically aligned (MA) TKA. Our study aims at assessing the relationship between constitutional knee anatomy and clinical outcomes of MA TKA. We hypothesized that a negative relationship would be found between the constitutional frontal knee deformity, the distal femoral joint line obliquity, and functional outcomes of MA TKA with a special emphasize on patellofemoral (PF) specific outcomes.

Methods

One hundred and thirteen patients underwent MA TKA (posterior-stabilized design) for primary end-stage knee osteoarthritis. They were prospectively followed for one year using the New KSS 2011 and HSS Patella score. Residual anterior knee pain was also assessed. Knee phenotypes using anatomical parameters (such as HKA, HKS, DFJLO and LDFA (Lateral distal femoral angle)) were measured from preoperative and postoperative lower-limb EOS® images (Biospace, Paris, France). We assessed the relationship between the knee anatomical parameters and the functional outcome scores at 1 year postoperatively.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 18 - 18
1 Feb 2020
Rivière C Jain A Harman C Maillot C Parsons T
Full Access

Introduction

The alternative kinematic alignment (KA) technique for total knee arthroplasty (TKA) aims at restoring the native joint line orientation and laxity of the knee. The goal is to generate a more physiological prosthetic knee enabling higher functional performance and satisfaction for the patient. KA TKA have only been reported so far with cruciate retaining and posterior-stabilised designs. Similarly, medial pivot design for TKA has been recently developed to enable more natural knee kinematics and antero-posterior stability. The superiority of KA technique and medial pivot implant design is still controversial when compared to current practice. Our study aims to assess the value of KA TKA when performed with medial pivot implants.

Methods

We conducted a retrospectively matched case-control study. Clinical data was prospectively collected on patients as part of an ongoing ODEP study. Thirty-three non-selected consecutive KA TKAs performed by the lead author were matched to a control group of 33 measured resection with mechanically aligned (MA) TKAs performed by other consultant surgeons. Patients were matched for sex, age, BMI and pre-operative Oxford Knee Score (OKS). Pre-operative median OKS was 21 points (max 48), mean age was 69, mean BMI 31, and there were 21 female patients in both arms. The medial pivot GMK Sphere implant (Medacta, Switzerland) was used in all cases. OKS and EQ-5D scores were measured pre-operatively and at 1-year post-op. Patient outcome satisfaction scores were assessed at 1-year follow-up using a visual analogic scale (VAS). Pre- and post-operative knee radiographs were analysed using TraumaCad software.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona®implant (Zimmer, Warsaw, USA) is kinematically aligned.

A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona®prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona®implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed.

Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively.

Kinematic alignment of Persona®implants poorly restores native trochlear geometry. Its clinical impact remains to be defined.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 22 - 22
1 Jan 2017
Rivière C Lazennec J Van Der Straeten C Iranpour F Cobb J
Full Access

The current, most popular recommendation for cup orientation, namely the Lewinnek box, dates back to the 70's, that is to say at the stone age of hip arthroplasty. Although Lewinnek's recommendations have been associated with a reduction of dislocation, some complications, either impingement or edge loading related, have not been eliminated. Early dislocations are becoming very rare and most of them probably occur in “outlier” patients with atypical pelvic/hip kinematics. Because singular problems usually need singular treatments, those patients need a more specific personalised planning of the treatment rather than a basic systematic application of Lewinnek recommendations. We aim in this review to define the potential impacts that the spine-hip relations (SHRs) have on hip arthroplasty. We highlight how recent improvements in hip implants technology and knowledge about SHRs can substantially modify the planning of a THR, and make the « Lewinnek recommendations » not relevant anymore. We propose a new classification of the SHRs with specific treatment recommendations for hip arthroplasty whose goal is to help at establishing a personalized planning of a THR. This new classification gives a rationale to optimize the short and long-term patient's outcomes by improving stability and reducing edge loading. We believe this new concept could be beneficial for clinical and research purposes.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 51 - 51
1 Jan 2017
Rivière C Beaulé P Lazennec J Hardijzer A Auvinet E Cobb J Muirhead-Allwood S
Full Access

In approximately 20 years, surgical treatment of femoro-acetabular impingement (FAI) has been widely accepted, and its indications refined. However, the current approach of the disease prevents a good understanding of its pathophysiology, and numerous uncertainties remain. Comprehending inter-individual spine-hip relations (SHRs) can further clarify the pathophysiology of impingement, and explain occasional surprising mismatch between clinical assessment and imaging or intraoperative findings. The rational is simple, the more the spino-pelvic complex is mobile (sagittal ROM) and the more the hip is protected against hip impingement but would probably become at risk of spine-hip syndrome if the spino-pelvic complex comes to degenerate. Grouping patients based on their spine-hip relation can help predict and diagnose hip impingement, and assess the relevance of physiotherapy. With the proposed new classification of FAIs, every patient can be classified in homogeneous groups of complexity of treatment. The primary aim of this paper is to raise awareness of the potential impact that the spine-hip relations have on the hip impingement disease. Two new classifications are proposed, for FAIs and SHRs that can help surgeons in their comprehension, and could be beneficial in clinical and research areas.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 65 - 65
1 Jan 2017
Rivière C Iranpour F Cobb J Howell S Vendittoli P Parratte S
Full Access

The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomical options restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” and “osteoarthritic knees” that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2017
Harris S Dhaif F Iranpour F Aframian A Cobb J Auvinet E Howell S Rivière C
Full Access

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction.

Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment.

The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects.

Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured.

In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001).

Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 55 - 55
1 Jan 2017
Rivière C Girerd D Ollivier M Argenson J Parratte S
Full Access

A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs.

We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had a standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured.

We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=-0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned.

In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 100 - 100
1 Jan 2017
Navruzov T Rivière C Van Der Straeten C Harris S Cobb J Auvinet E Aframian A Iranpour F
Full Access

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise.

The aim is to create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone.

The concept is to use post-operative femoral shaft segments free of metal noise and of surgical alteration for alignment with the pre-operative scan. It involves three steps. Firstly, using principal component analysis, the femoral shafts are re-oriented to match the X axis. Secondly, variants of the post-operative scan are created by subtracting 1mm increments from the distal femoral end. Thirdly, an iterative closest point algorithm is applied to align the variants with the pre-operative scan.

For exploratory validation, this algorithm was applied to a mesh representing the distal half of a 3D scanned femur. The mesh of a prosthesis was blended with the femur to create a post-operative model. To simulate a realistic environment, segmentation and metal artefact noise were added. For segmentation noise, each femoral vertex was translated randomly within +−1mm,+−2mm,+−3mm along its normal vector. To create metal artefact random noise was added within 50 mm of the implant points in the planes orthogonal to the shaft. The alignment error was considered as the average distance between corresponding points which are identical in pre- and post-operative femora.

These preliminary results obtained within a simulated environment show that by using only the native parts of the femur, the algorithm was able to automatically register the pre- and post-operative scans even in presence of the implant. Its application will allow visualisation of the scans on the same display for the direct comparison of the perioperative scans.

This method requires further validation with more realistic noise models and with patient data. Future studies will have to determine if correct alignment has any effect on inter- and intra-observer variability.