Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 464 - 464
1 Nov 2011
Puthumanapully P Browne M
Full Access

Uncemented hip implants commonly have porous coated surfaces that enhance the mechanical interlock with bone, encourage bone ingrowth and promote the formation of a stable interface between prosthesis and bone. However, the presence of tissue, either fibrous or with parts of osseous tissue, at the interface between the implant and the bone has been commonly observed after a few years in vivo. The exact mechanisms that govern the type of tissues formed at the interface are not fully understood and several theories have been proposed. This study aims to employ finite element analysis (FEA) to simulate tissue formation and differentiation around the AML (DePuy, Warsaw, USA) femoral implant by employing a tissue differentiation algorithm based on a mechanoregulatory hypothesis of fracture healing.

FE models of the femur were generated using computer tomography (CT) scans. The AML prosthesis was then implanted into the bone and a granulation tissue layer of 0.75mm was created around the implant. The mechanoregulatory hypothesis of Carter et al (J.Orthop, 1988) originally developed to explain fracture healing was used with selected modifications, most notably the addition of a quantitative module to the otherwise qualitative algorithm. The tendency of ossification in the original hypothesis was modified to simulate tissue differentiation to bone, cartilage or fibrous tissue. Normal walking and stair climbing loads were used for a specified number of cycles reflecting typical patient activity post surgery.

The transformation of granulation tissue to one of the three simulated tissue types was evident as the iterations progressed. The majority of the tissue type formed initially was cartilage and bone (~40% each), and occupied the mid to distal regions of the implant respectively. After tissue stabilisation, the prominent tissue type was bone (65%), occupying most of the mid-distal regions with a significant decline in cartilage tissue formed. This has been shown in clinical retrieval studies with the same implant, where maximum bone ingrowth is in the mid-distal regions of the implant, directly corresponding to the region where there is minimal micromotion. This would be the case with a diaphyseal fixation, which most AML prostheses employ for stability. Fibrous tissue formation was limited to the proximal-medial regions (~10%), with the remainder of the proximal regions filled with cartilage tissue. In addition, predicted bone formation was along the lines of the more stable cartilage tissue as opposed to directly replacing fibrous tissue. The formation of bone would require repeated periods of minimal micromotion and stress at the interface tissue; this was facilitated by the presence of cartilage tissue around the mid regions of the implant. The micromotion and interface stresses in the proximal regions of the implant were too high to encourage bone ingrowth, resulting in the presence of tissue that remained fibrous throughout the process.

The FE model, employing a very simple tissue differentiation hypothesis and algorithm was able to predict the formation of different tissues at the interface. Initial bone formation was rapid, occupying the distal regions of the implant, and then gradually occupying a larger portion of the mid-regions around the implant. The proximal regions were largely occupied by a combination of fibrous and cartilage tissue. Overall, the presence of bone and cartilage tissue accounted for nearly 85% of the tissue formed which would suggest a very stable interface as predicted by the Carter’s hypothesis.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 427 - 427
1 Nov 2011
Puthumanapully P Browne M New A
Full Access

Uncemented porous-coated total hip prostheses rely on osseointegration or bone ingrowth into the pores for a stable interface and long term fixation. One of the criteria for achieving this is good initial stability, with failure often being associated with migration and excessive micromotion. This has particularly been noted for long stem prostheses. To minimize micromotion and increase primary stability, a short stemmed implant ‘PROXIMA’(DePuy; Leeds, UK) with a prominent lateral flare was developed with the aim of providing a closer anatomical fit, more physiological loading and limiting bone resorption due to stress shielding. This study aims to simulate bone ingrowth and tissue differentiation around a well fixed porouscoated short stemmed implant using a mechanoregulatory algorithm and finite element analysis (FEA). Specific emphasis is made on the design of the implant and its effect on osseointegration.

An FE model of the proximal femur was generated using computer tomography (CT) scans. The PROXIMA was then implanted into the bone maintaining a high neck cut and adequate cancellous bone on the lateral side to accommodate the lateral flare and for osseointegration. A granulation tissue layer of 0.75mm was created around the implant corresponding to the thickness of the porous coating used. The mechanoregulatory hypothesis of Carter et al (J. Orthop, 1988) originally developed to explain fracture healing was used with selected modifications, most notably the addition of a quantitative module to the otherwise qualitative algorithm. The tendency of ossification in the original hypothesis was modified to simulate tissue differentiation to bone, cartilage or fibrous tissue. Normal walking and stair climbing loads were used for a specified number of cycles reflecting typical patient activity post surgery.

The majority of the tissue type predicted to be formed, simulating a month in vivo, is fibrous and indicates a weak interface proximally after this period. The stronger tissues, bone and cartilage occupy the mid-lower regions, indicating a strong interface distally. This can be explained by the unique lateral flare that provides extra stability to the distal regions of the implant, especially on the lateral side. The percentage of bone ingrown around the implant at different stages is also important and there was a significant rise from 15% after 10 cycles to about 30% after 30 cycles, simulating a month in vivo. It was also noted that initial bone formation was very high, even after a few cycles, which leads to a stronger interface early on. Fibrous tissue occupied around 45% at almost all stages and did not vary considerably.

Cartilage however, was replaced by bone as tissue differentiation occurred, reducing from about 30% after 10 cycles to 20% after 30 cycles. This further indicates the trend of tissue ossification through the regions of stronger tissues, gradually proceeding in the direction of the weaker tissues.

The unique lateral flare design and the seating of the implant entirely in the cancellous bed without any diaphyseal fixation provides contrasting results in terms of bone ingrowth around the implant. The lateral flare minimises micromotion and provides better stress distribution at the interface under the region. This accounts for a large percentage of the mid to distal regions under the flare being covered with either bone or cartilage. From the predictions of the algorithm, the significant lateral flare of the PROXIMA helps in stabilizing the implant and provides better osseointegration in the distal regions around the implant.