Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with image analysis.Objectives
Methods
Description of an original in vitro protocol for assessing combined bacteria and cell competitive adherence on the surface of biomaterials of medical interest Biomaterial-related infections are a major clinical problem. The pathogenesis of this syndrome has been described as a competitive adherence between bacteria and human cells in the so-called “race for the surface” theory. The aim of this study is to develop an Summary Statement
Objectives
Biomaterial-related infections are an important complication in orthopaedic surgery [1], and A 18mm diameter rod of Ti–6Al–4V alloy ELI grade according to the standard ASTMF136-02 supplied by SURGIVAL was cut into 2 mm thick disk specimens, ground through successive grades of SiC paper to 1200 grade, degreased with a conventional detergent and rinsed in tap water followed by deionised water. The specimens were then chemically polished (CP). The disks were anodized only on one side by using a two electrode cell in a suitable electrolyte. TiO2 barrier layers, without fluoride (BL), were produced by anodizing in 1 M H2SO4 at 15 mA cm-2 to 90 V, reaching 200 nm of thickness. Fluoride barrier layers (FBL) were produced in an electrolyte containing 1 M NH4H2PO4 and 0.15 M NH4F, at constant voltage controlled at 20 V for 120 min at 20°C; the thickness of the layer is 140 nm. Laboratory biofilm-forming strains of INTRODUCTION
MATERIAL AND METHODS