We investigated the revision rates of primary total hip replacement (THR) reported in the National Joint Registry (NJR) by types of bearing surfaces used. We analysed THR procedures across all orthopaedic units in England and Wales. Our analyses estimated all-cause and cause-specific revision rates. We identified primary THRs with heads and monobloc cups or modular acetabular component THRs with head and shell/liner combinations. We used flexible parametric survival models to estimate adjusted hazard ratios (HR). A total of 1,026,481 primary THRs performed between 2003–2019 are included in the primary analysis (Monobloc: n=378,979 and Modular: n=647,502) with 20,869 (2%) of these primary THRs subsequently undergoing a revision episode (Monobloc: n=7,381 and Modular: n=13,488). Compared to implants with a cobalt chrome head and highly crosslinked polyethylene (HCLPE) cup, the all-cause risk of revision for monobloc acetabular implant was higher for patients with cobalt chrome or stainless steel head and non-HCLPE cup. The risk of revision was lower for patients with a delta ceramic head and HCLPE cup implant, at any post-operative period. Compared to patients with a cobalt chrome head and HCLPE liner primary THR, the all-cause risk of revision for modular acetabular implant varied non-constantly. THRs with a delta ceramic or oxidised zirconium head and HCLPE liner had a lower risk of revision throughout the entire post-operative period. The all-cause and indication-specific risk of prosthesis revision, at different time points following the initial implantation, is lower for implants with a delta ceramic or oxidised zirconium head and a HCLPE liner/cup than commonly used alternatives such as cobalt chrome heads and HCLPE liner/cup.
Hip bearing surfaces materials are typically broadly reported in national registry (metal-on-polyethylene, ceramic-on-ceramic etc). We investigated the revision rates of primary total hip replacement (THR) reported in the National Joint Registry (NJR) by detailed types of bearing surfaces used. We analysed THR procedures across all orthopaedic units in England and Wales. Our analyses estimated all-cause and cause-specific revision rates. We identified primary THRs with heads and monobloc cups or modular acetabular component THRs with detailed head and shell/liner bearing material combinations. We used flexible parametric survival models to estimate adjusted hazard ratios (HR). A total of 1,026,481 primary THRs performed between 2003–2019 were included in the primary analysis (Monobloc cups: n=378,979 and Modular cups: n=647,502) with 20,869 (2%) of these primary THRs subsequently undergoing a revision episode (Monobloc: n=7,381 and Modular: n=13,488). Compared to implants with a cobalt chrome head and highly crosslinked polyethylene (HCLPE) cup, the overall risk of revision for monobloc acetabular implant was higher for patients with cobalt chrome or stainless steel head and non-HCLPE cup. The risk of revision was lower for patients with a delta ceramic head and HCLPE cup implant, at any post-operative period. Compared to patients with a cobalt chrome head and HCLPE liner primary THR, the overall risk of revision for modular acetabular implant varied non-constantly. THRs with a delta ceramic or oxidised zirconium head and HCLPE liner had a lower risk of revision throughout the entire post-operative period. The overall and indication-specific risk of prosthesis revision, at different time points following the initial implantation, is reduced for implants with a delta ceramic or oxidised zirconium head and a HCLPE liner/cup in reference to THRs with a cobalt chrome head and HCLPE liner/cup.
Implants in total hip replacement (THR) are associated with different clinical and cost-effectiveness profiles,. We estimate the costs and outcomes for NHS patients in the year after THR associated with implant bearing materials using linked routinely collected data. We linked NJR primary elective THR patients for osteoarthritis to HES and National PROMs. We estimated health care costs, health-related quality of life indices, and revision risks, in the year after primary and revision THRs overall. We used generalised linear models adjusting for patient and hospital characteristics and estimated 10-year cumulative probability of revision. We imputed utilities using chained equations for half the sample with missing PROMS. We linked 577,973 elective primary THRs and 11,812 subsequent revisions. One year after primary THR, patients with the cemented THRs using cobalt chrome or stainless steel head with HCLPE liner/cup cost the NHS, on average, £13,101 (95%CI £13,080,£13,122), had an average quality-of-life score of 0.788 (95%CI 0.787,0.788), and a 10-year revision probability of 1.9% (95%CI 1.6,2.3). Compared to the reference, patients receiving a cemented THR with delta ceramic head and HCLPE liner/cup, hybrid THR with delta ceramic head and HCLPE liner/cup, and hybrid THR with alumina head and HCLPE liner/cup had lower 1-year costs (-£572 \[95% CI -£775,-£385\], -£346 \[-£501,-£192\], -£371 \[-£574,-£168\] respectively), better quality of life (0.007 \[95% CI 0.003,0.011\], 0.013 \[0.010,0.016\], 0.009 \[0.005,0.013\] respectively), and lower 10-year revision probabilities (1.4% \[1.03,2.0\], 1.5 \[1.3,1.7\], 1.6%\[1.2,2.1\] respectively). Implant bearing materials are associated with varying mean costs and health outcomes after primary THR. Ours is the first study to derive costs and health outcomes from large, linked databases using multiple imputation methods to deal with bias. Our findings are useful for commissioning and procurement decisions and to inform a subsequent cost-effectiveness model with more granular detail on THR implant types.
Regional anaesthesia is integral to best practice analgesia for patients with neck of femur fractures (NOFFs). These patients are generally frail and are vulnerable to side effects of opioid analgesia. Femoral nerve block (FNB) or fascia-iliaca block (FIB) can reduce opioid requirement. Literature supports good efficacy for extra-capsular NOFFs however it is acknowledged to be suboptimal for intracapsular fractures. We present a novel technique, using point of care ultrasound guidance to perform hip ultrasound guided haematoma (HUSH) aspiration, and injection of local anaesthetic (block) for intracapsular NOFFs. This a case control series. A consecutive series of cognitively intact patients, with an isolated intra-capsular NOFF, received a HUSH block using 10mls of 0.75% Ropivicaine. Haematoma was aspirated and volume recorded. This was performed in addition to standard NOFF pathway analgesia that includes a FIB and multimodal analgesia including opioids. Visual Analogue Scale (VAS)pain scores at rest and on movement were recorded pre and post procedure as well as combined morphine equivalent units administered post HUSH block. The control arm was a retrospective group of similar patients who followed the routine care pathway including a FIB. VAS pain scores from observation charts and usage of morphine equivalent units were calculated. Ten patients consented to receive HUSH blocks and we included thirty-eight patients in our control series. The HUSH block group showed mean VAS pain score of 4.2/10 at rest and 8.6 on movement prior to block. In the time after the block, VAS pain scores reduced to 1.5 at rest (p=0.007) and 3.1 on movement (p=0.0001) with a mean total morphine equivalent use of 8.75mg. This is significantly different from the control group's mean VAS pain at rest score 6.9 (p=0.0001) and 24.1mg total morphine equivalent (p=0.07). HUSH Block in addition to fascia iliaca block appears to significantly better pain relief in intracapsular neck of femur fracture patients when compared to fascia iliaca block alone. We believe it is relatively easy to perform with readily available ultrasound scanners in emergency departments.
The aim of this study was to evaluate the indications for patients presenting with knee pain undergoing magnetic resonance imaging of the knee prior to referral to the orthopaedic department and to ascertain whether plain radiograph imagining would be more beneficial prior to an MRI scan. A retrospective review of all referrals received by the hospital over a 6-month period was performed. Patients with knee pain that underwent an MRI scan were classified into two age groups, under 50 years and over 50 years old. Patients having undergone Magnetic resonance imaging (MRI) prior to referral were identified, and findings of the scan were recorded. These patients were reviewed further to see if a plain radiograph had been completed prior to or after the MRI.Abstract
Aims
Method
Adverse local tissue reactions (ALTR) can result in devastating soft tissue and osseous destruction, while potentially increasing the risk of concomitant periprosthetic joint infection (PJI). The aims of this study were to evaluate cobalt (Co) and chromium (Cr) levels generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs, and determine their impact on native tissues and PJI risk through evaluation of human adipose-derived mesenchymal stem cells (AMSCs) and Ten hip simulator constructs were assembled with 36-mm high-offset femoral heads, highly cross-linked polyethylene liners, and titanium stems. Five constructs used CoCr femoral heads and five used ceramic. Constructs were submerged in bovine serum (BS) and run for 1,000,000 cycles. Samples of BS were collected and evaluated for CoCr concentration. Various concentrations of CoCr were chosen for further assessment of cytotoxicity and growth impact on AMSCs and Introduction
Methods
Stable fixation of cementless tibial trays remains a challenge due bone density variability within the proximal tibia and the spectrum of loads imposed by different activities. This study presents a novel approach to measuring the interface motion of cementless tibial components during functional loading and tests whether interface motion of cementless tibial trays varies around the implant periphery. We developed a method to measure relative displacement of a tibial tray relative to the underlying bone using 3D digital image correlation (DIC) and multi-camera stereo photogrammetry. A clinically successful design of cementless total knee prosthesis (Zimmer Inc, Warsaw, IN) was implanted in 6 fresh cadaveric knees. A black-on-white stochastic pattern was applied to the outer surface of the tibia and the cementless prosthesis. High resolution digital images were prepared of the interface region and divided into 25 × 25 pixel regions of interest (ROI). Stereo images of the same ROI were generated using two cameras angled at 60 degrees using image correlation techniques. All specimens were mounted in a custom-built functional activity simulator and loaded with the forces and moments recorded during three common functional activities (standing from a seated position, walking, and stair descent), as reported in the Orthoload database, scaled by 50% for application to cadaveric bone. Prior to functional testing, each implant-tibia construct was preconditioned with 500 cycles of flexion from 5–100 degrees under a vertical tibial load of 1050 N at a frequency of 0.2 Hz. During loading, image data was acquired simultaneously (±20 μs) from the entire circumference of the tibial interface forming 4 stereo images using 8 cameras spaced at 90 degree intervals (Allied Vision Technologies, Exton, PA) using custom image acquisition software (Mathworks, Natick, MA) (Figure 1). The multiple stereo images were registered using the surface topography of each specimen as measured by laser scanning (FARO Inc., Montreal) (Figure 2). During post-processing, the circumferential tray/tibia interface was divided into 10 zones for subsequent analysis (Figure 3). Interface displacements were measured on a point-to-point basis at approximately 700 sites on each specimen using commercial DIC software (Dantec Dynamics, Skovlunde, Denmark) (Figure 4).INTRODUCTION
METHODS
Cementless tibial trays commonly fail through failure of fixation due to excessive interface motion. However, the specific combination of axial and shear forces precipitating implant failure is unknown. This has led to generic loading profiles approximating walking to perform pre-clinical assessment of new designs, even though telemetric data demonstrates that much larger forces and moments are generated during other functional activities. This study was undertaken to test the hypotheses: (i) interface motion of cementless tibial trays varies as a function of specific activities, and (ii) the response of the cementless tibial interface to walking loading is not representative of other functional activities. Six fresh-frozen cadaveric tibias were tested using a custom designed functional activity simulator after implantation of a posterior stabilized total knee replacement (NexGen LPS, Zimmer, Warsaw IN). Activity scenarios were selected using force (Fx, Fy, Fz) and moment (Mx, My, Mz) data from patients with instrumented tibial trays (E-tibia) published by Bergmann et al. A pattern of black and white spray paint was applied to the surface of the specimen including the tibial tray and bone. Each specimen was preconditioned through application of a vertical load of 1050N for 500 cycles of flexion-extension from 5–100°. Following preconditioning, each tibia was loaded using e-tibia values of forces and moments for walking, stair-descent, and sit-to-stand activities. The differential motion of the tibial tray and the adjacent bony surface was monitored using digital image correlation (DIC) (resolution: 1–2 microns in plane; 3–4 microns out-of-plane). Four pairs of stereo-images of the tray and tibial bone were prepared at sites around the circumference of the construct in both the loaded and unloaded conditions: (i) before and after pre-conditioning and (ii) before and after the 6 functional loading profiles. The images were processed to provide circumferential measurements of interface motion during loading. Differences in micromotion and migration were evaluated statistically using step-wise multivariate regression.INTRODUCTION
MATERIALS and METHODS
Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. Appropriately sized DM components were implanted virtually for each specimen. Once placed in its proper position, the liner was rotated about the flexion axis until it contacted the stem posteriorly to represent its orientation during hip extension (Introduction
Methods
Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like hip capsule and iliopsoas, leading to anterior hip pain. Additionally, soft-tissue impingement may trap the mobile liner, leading to excessive loading of the liner rim, from engagement with the femoral stem, and subsequent intra-prosthetic dislocation. The hypothesis of this study was that reducing the liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and overall hip joint stability ( The interaction of conventional and contoured liners with anterior soft-tissues was evaluated in 10 cadaveric hips (5 specimens; 2 male, 3 female; age 65 ± 10 yrs; liner diameter 42–48mm) via visual observation and fluoroscopic imaging. A metal wire was sutured to the deep fibers of the iliopsoas tendon/muscle, and metal wires were embedded in the mobile liners for fluoroscopic visualization Resistance to inner-head pull-out was evaluated via Finite Element Analysis (FEA) by simulating a full cycle of insertion of the inner head into the mobile liner and subsequent pullout. The femoral head, acetabular shell, and stem were modeled as rigid, while the mobile liner was modeled as plastically deformable. Hip joint stability was evaluated by dynamic simulations in for two dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal hip rotation; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction. A 44 mm diameter conventional and a 44 mm contoured liner were evaluated during these tests.Introduction
Methods
Dual-mobility (DM) liners have increased popularity due to the range of motion and stability provided by these implants. However, larger head diameters have been associated with anterior hip pain, due to surrounding soft-tissue impingement, particularly the iliopsoas. To address this, an anatomically contoured dual mobility (ACDM) liner was designed by reducing the volume of the liner below the equator (Fig1). Previous cadaver studies have shown that the ACDM significantly reduces iliopsoas tenting and trapping of the liner compared to conventional designs. We created a finite element study based on previous cadaver testing to further analyze the effectiveness of the ACDM design in reducing soft-tissue impingement, specifically the tendon-liner contact pressure and the tendon stress. The finite element model was developed within COMSOL 4.3b. The psoas tendon was modelled as a Yeoh hyper-elastic Material, which uses 3 constants (c1-c3), density (1.73g/cm3) and a bulk modulus (26GPa)[Hirokawa,2000]. In a previous, separate study, the average stiffness of 10 psoas tendon samples (5 cadavers), were measured to be 339[N/mm] in the linear region with average width and thickness of 14mmX4mm. The 3 constants were tuned to match experimental uniaxial test data, and were 5[GPa], 0[Gpa], and 46[GPa] for c1, c2, and c3 respectively. The implant components were rigidly modeled relative to the psoas. Cadaver specific CT models were used to create the FEA geometry. The insertion points for the Psoas were digitally determined on the proximal end of the lesser trochanter, and the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. These insertion points determined the length of the psoas and its relative position to the femoral head in 3D. The specific liner size and position for each cadaver was determined by implant planning with the CT models. In this abstract, we only present data for 2 specimens (left/right hips) with 44mm conventional DM, and 44mm ACDM, matching specimen anatomy. A 500N tensile load was applied to the psoas tendon proximally to simulate moderate physiological loading, the average/max stresses and contact pressures between the psoas and the two liner designs were determined.Introduction
Methods
There is tremendous variability amongst surgeons' ability to reference anatomic landmarks. This may suggest the necessity of other objective methods in determining femoral alignment and rotation. Despite the durability of total knee arthroplasty, there is much room for improvement with regards to functional outcome and patient satisfaction. One important factor contributing to poor outcomes after TKA is malrotation of the femoral component. It has been postulated that this is due to failure of surgeons to correctly reference bony landmarks, principally the femoral epicondyles, however, this is unproven. The purpose of this study was to evaluate the accuracy of joint surgeons and trainees in identifying anatomic landmarks for positioning the femoral component and to determine the effect of prior training and experience.Summary
Introduction
Mechanically-assisted corrosion of the head-neck junction present a dilemma to surgeons at revision THR whenever the femoral component is rigidly fixed to the femur. Many remove the damaged femoral head, clean the femoral taper and fix a new head in place to spare the patient the risks associated with extraction and replacement of the well-functioning femoral stem. This study was performed to answer these research questions:
Will new metal heads restore the mechanical integrity of the original modular junction after impaction on corroded tapers? Which variables affect the stability of the new interface created at revision THR? Twenty-two tapers (CoCr, n=12; TiAlV, n=10) were obtained for use in this study. Ten stems were in pristine condition, while 12 stems had been retrieved at revision THR and with corrosion damage to the trunnion (Goldberg scale 4). Twenty-two new metal heads were obtained for use in the study, each matching the taper and manufacturer of the original component. The following test states were performed using a MTS Machine: 1. Assembly, 2. Disassembly, 3. Assembly, 4. Toggling and 5. Disassembly. All head assemblies were performed wet using 50% calf serum in accordance to ISO 7206-10. During toggling, each specimen's loading axis was aligned 25° to the trunnion axis in the frontal plane and 10° in the sagittal plane (Figure 1). Toggling was performed at 1Hz for 2,000 cycles with a sinusoidal loading function (230N–4300N). During loading, 3D motion of the head-trunnion junction was measured using a custom jig rigidly attached to the head and the neck of each prosthesis. Relative displacement of the head with respect to the neck was continuously monitored using 6 high resolution displacement transducers with an accuracy of ±0.6µm. Displacement data was independently validated using FEA models of selected constructs.Introduction
Materials and Methods
Cementless surface replacement arthroplasty (CSRA) is an established treatment for glenohumeral osteoarthritis. Few studies however, evaluate its role in cuff tear arthopathy. The purpose of this study is to compare the outcomes of CSRA for both glenohumeral osteoarthritis and cuff tear arthopathy. 42 CSRA with the Mark IV Copeland prosthesis were performed for glenohumeral osteoarthritis (n=21) or cuff tear arthopathy (n=21). Patients were assessed with Oxford and Constant scores, patient satisfaction, range of motion and radiologically with plain radiographs. Mean follow-up and age was 5.2 years and 74 years in both groups. Functional outcomes were significantly higher in OA compared with CTA with OSS improving from 18 to 37.5 and 15 to 26 in both groups respectively. Forward flexion improved from 60° to 126° and 42° to 74° in both groups. Three patients in the CTA group had a deficient subscapularis tendon, two of whom dislocated anteriorly. Humeral head resurfacing arthroplasty is a viable treatment option for glenohumeral osteoarthritis. In patients with CTA, functional gains are limited. We suggest CSRA should be considered in low demand patients where pain is the primary problem. Caution should be taken in patients with a deficient subscapularis due to the high risk of dislocation.
Knee pain and instability during high demand activities such as stair descent are reported by patients after TKA. Previous studies theorized that this pain is from increased demand on the quadriceps required to stabilize the femur on the tibia. In this study we explore the relationship between implant design, the posterior cruciate ligament (PCL), and AP stability of the knee during stair descent. CTs of 6 fresh-frozen human cadaveric knees (average age: 61 ± 6.5 years) with functioning cruciates were prepared. All specimens were mounted in a computer controlled, 6 DOF simulator programed to apply physiologic muscle loads and flexion/extension moments simulating the highest demand phase of stair descent (terminal swing to initial contact). A contemporary design of TKA was implanted in each specimen by an experienced surgeon. Testing was repeated after implantation of tibial inserts of the CR, CS with and without a PCL and PS designs.Purpose:
Methods:
Malpositioning of the tibial component is a common error in TKR. In theory, placement of the tibial tray could be improved by optimization of its design to more closely match anatomic features of the proximal tibia with the motion axis of the knee joint. However, the inherent variability of tibial anatomy and the size increments required for a non-custom implant system may lead to minimal benefit, despite the increased cost and size of inventory. This study was undertaken to test the hypotheses:
That correct placement of the tibial component is influenced by the design of the implant. The operative experience of the surgeon influences the likelihood of correct placement of contemporary designs of tibial trays. CAD models were generated of all sizes of 7 widely used designs of tibial trays, including symmetric (4) and asymmetric (3) designs. Solid models of 10 tibias were selected from a large anatomic collection and verified to ensure that they encompassed the anatomic range of shapes and sizes of Caucasian tibias. Each computer model was resected perpendicular to the canal axis with a posterior slope of 5 degrees at a depth of 5 mm distal to the medial plateau. Fifteen joint surgeons and fourteen experienced trainees individually determined the ideal size and placement of each tray on each resected tibia, corresponding to a total of 2030 implantations. For each implantation we calculated: (i) the rotational alignment of the tray; (ii) its coverage of the resected bony surface, and (iii) the extent of any overhang of the tray beyond the cortical boundary. Differences in the parameters defining the implantations of the surgeons and trainees were evaluated statistically.Introduction
Materials and Methods
After TKR, excessive tension within the lateral retinaculum can lead to joint instability, component wear, stiffness and pain. The spatial distribution of strain in the lateral retinculum is unknown, both in the native knee and after TKR. In this study we measure the magnitude and distribution of mechanical strain in the lateral retinaculum with knee flexion, both in the native knee and after TKR. We hypothesize that:
Strain in the lateral retinaculum will increase as a function of flexion. Some regions of the lateral retinaculum experience greater strain than others. TKR will affect the magnitude and location of strain during knee flexion. A fiduciary grid of approximately 40–70 markers was attached to the exposed lateral retinacula of five fresh frozen cadaveric knees in order to allow tracking of soft-tissue deformation. Each knee was flexed from 0–120° in a 6 degree-of-freedom custom activity simulator that physiologically loaded the knee during a squatting maneuver. During simulation, the displacement of each fiduciary point was measured using visible-light stereo-photogrammetry. The fiduciary grid divided into four distinct regions for strain analysis. Using the grid of the native knee in full extension as the initial state, the average principal strain in each region was calculated as a function of flexion. Measurements were repeated after TKR was performed using a contemporary implant system.Introduction
Materials and Methods
Increasing attention to the functional outcome of total knee arthroplasty (TKA) has demonstrated that many patients experience limitations when attempting to perform demanding activities that are normal for age-matched peers, primarily because of knee symptoms. Episodes of instability following TKA are most commonly reported during activities in which significant transverse or torsional forces are supported by the joint with relatively low joint compression forces, including stair-descent and walking on sloped or uneven surfaces. This study was performed to examine the influence of conformity between the femoral and tibial components on the Antero-Posterior (AP) stability of knee during stair descent. Six cadaveric knees were loaded in a six degree-of-freedom joint simulator, with the application of external forces simulating the action of the quadriceps and hamstring muscles and the external loads and moments occurring during stair descent, including the stages of terminal swing phase, weight-acceptance phase (prior to and after quadriceps contraction) and mid-stance. During these manoeuvres, the displacement and rotation of the femur and the tibia were measured with a multi-camera high resolution motion analysis system (Fig. 1). Each knee was tested in the intact and ACL deficient condition – and after implantation of total knee prosthesis with Cruciate-Retaining (CR), Cruciate-Sacrificing with an intact PCL (CS + PCL), Cruciate-Sacrificing with an absent PCL (CS-PCL) and Posterior-Stabilizing (PS) tibial inserts (Figs 2 and 3).Introduction
Methods
The Femoro Patella Vialli (FPV) is indicated for isolated patello-femoral joint replacement (PFJR). It is now the second most commonly used PFJR in the UK, however there are limited studies evaluating its outcome. Key differences include a larger component sulcus angle of 140 degrees which more closely mimics the normal knee. Between 2006 and 2012, we performed 53 consecutive FPV patellofemoral arthroplasties in 41 patients with isolated patellofemoral joint osteoarthritis. Mean age was 62.2years (39–86) and mean follow-up was 3.5 years. Mean Oxford Knee scores improved from 19.7 to 37.7 at latest follow-up. Ninety four percent of patients were happy or very happy with their knees. Progression of tibiofemoral osteoarthritis was seen 12% of knees. 2 knees required revision to TKR at 7 months post-operatively, which we attribute to poor patient selection. There were no cases of maltracking patella or patella dislocations at final follow-up, which we attribute to the larger sulcus angle. There were no cases of radiological loosening. Our findings suggest the FPV patellofemoral prosthesis has good mid-term functional outcomes.
Femoral components used in total hip arthroplasty (THA) rely on good initial fixation determined by implant design, femoral morphology, and surgical technique. A higher rate of varus alignment may be of specific concern with short stem implants. Varus placement in uncemented femoral components has been proven not to be detrimental to clinical function; though long-term bone remodeling secondary to varus placement remains unknown. The goal of this study was to compare the clinical and radiographic outcomes in patients who underwent THA with one of two uncemented short stem metaphyseal engaging implants at minimum two-year follow-up. A review of 105 patients (average age 65 years; BMI 29 kg/m2) who underwent a total of 109 primary THAs using the ABG II short stem femoral implant (Stryker, Mahwah, NJ), and 160 hips in 149 patients (average age 70 years; BMI 28 kg/m2) who underwent primary THA using the Citation stem (Stryker, Mahwah, NJ). The same surgeon (SDS) performed all surgeries through a less invasive posterolateral approach. Pre-operative and post-operative Harris Hips Scores (HHS) and WOMAC scores were collected. Digital radiograph analysis was performed including measuring the stem alignment relative to the femoral shaft. A stem placed with greater than 5 degrees of varus was considered to be in varus. There was no significant difference in demographics (age, gender or BMI) or pre-operative HHS and WOMAC scores between the two groups. Follow-up HHS was 90 (range 63–100) and 94 (range 70–100) for the ABG II and Citation groups, respectively. Follow-up WOMAC scores were 10 (range 0–24) and 6 (range 0–43) for the ABG II and Citation groups, respectively. There was no statistically significant difference in any of the scores between the two groups (p>0.05). When looking at AP radiographs for postoperative intramedullary alignment, none of the ABG II implants were placed in varus (>5°), while a small number (4.9%) of Citation implants were implanted in varus alignment. No significant difference was observed in the alignment between the two groups (p>0.05). Average post-op alignment with the ABG was 1.10° (range −4.7–4.9°) and 0.88° (range −4.5–8.9°) with the Citation. The clinical results associated with the use of these stems in patients of all ages and bone types have been identical to those achieved by uncemented stems of standard length. Both implants in this study had excellent clinical and functional results in primary THA after a minimum 24-month follow up. In addition, postoperative radiographic analysis demonstrated that these stems can be reliably and reproducibly placed in neutral alignment despite their short length. The lateral flare on the Citation implant led to a greater number of implants in varus alignment, potentially affecting offset and leg-length, yet the relative increased incidence compared to the ABG II was not significant. Further research is needed in designing implants that optimize proximal femoral contact while maintaining alignment and overall hip kinematics.