Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_10 | Pages 23 - 23
1 Jul 2014
McGoldrick NP Olajide K Noel J Kiely P Moore D Kelly P
Full Access

Our aim was to use CT Scanogram to evaluate fibular growth, and thus calculate normal growth velocity, which may aid in determining the timing of epiphysiodesis.

Current understanding of normal lower limb growth and growth prediction originates in the work of Anderson et al published in the 1960s. There now exist several clinical and mathematical methods to aid in the treatment of leg length discrepancy, including the timing of epiphysiodesis. Early research in this area provided limited information on the growth of the fibula. It is now well recognized that abnormal growth of paired long bones may evolve into deformity of clinical significance. Existing work examining fibular growth used plain film radiography only. Computed Tomography (CT) scanogram is now the preferred method for evaluating leg length discrepancy in the paediatric population. We calculated fibular growth for 28 children (n = 28, 16 girls and 12 boys) presenting with leg length discrepancy to our unit. Mean age at presentation was 111.1 months (range 33 – 155 months). For inclusion, each child had to have at least five CT scanograms performed, at six monthly intervals. Fibular length was calculated digitally as the distance from the proximal edge of the proximal epiphysis to the most distal edge of the distal epiphysis. For calculation purposes, mean fibular length was determined from two measurements taken of the fibula. A graph for annual fibular growth was plotted and fibular growth velocity calculated.

CT Scanogram may be used to calculate normal fibular growth in children presenting with leg length discrepancy.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 3 - 3
1 Jun 2012
O'Daly BJ Moore D Noel J Kiely P Kelly P
Full Access

Introduction

Developments in the use of ultrasound during pregnancy for assessment of fetal spine abnormalities indicate a need for accurate information about the antenatal development of the vertebral column. The published work is deficient in this regard, with available data examining only the period of 8–26 weeks. The aims of this study are to establish antenatal spine growth curves with fetal radiographs, to establish growth velocity curves for each anatomical spinal, region and to calculate the multiplier factor during antenatal life.

Methods

75 anteroposterior spine radiographs were retrieved from the fetal pathology unit. Cases with spinal anomalies were excluded from analysis. Individual vertebral regions were measured from radiographs with the method of Bagnall and colleagues,1 with use of DICOM software. Polynomial regression analysis was applied to each measurement with PASW statistics 18 (SPSS, Chicago, IL, USA).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 48 - 48
1 May 2012
Moroney P Noel J Fogarty E Kelly P
Full Access

Congenital Talipes Equinovarus (CTEV) occurs in approximately 1 in 1000 live births. Most cases occur as an isolated birth defect and are considered idiopathic. The widespread adoption of the Ponseti technique of serial casting followed by Achilles tenotomy and long term bracing has revolutionised the outcomes in CTEV. In most cases, plantigrade, flexible, pain-free feet may be produced without the need for extensive surgery. It is estimated that about 10% of cases of CTEV are not idiopathic. These feet are stiffer and more challenging to treat. In particular, there is little evidence in the literature concerning the efficacy of the Ponseti method in these cases.

In our institution, a dedicated weekly Ponseti clinic has operated since 2005. To date 140 patients have been treated. We prospectively enter all details regarding their management onto an independent international database.

The aim of this study was to audit the non-idiopathic cases of CTEV and to assess the effectiveness of the Ponseti technique in these challenging cases. Outcome measures included the Pirani score and eventual need for surgical intervention.

We identified 29 cases (46 feet) with non-idiopathic CTEV. This comprises 21% of our workload. Seventeen were bilateral. The commonest diagnoses were neuromuscular conditions such as spina bifida (5 cases) and cerebral palsy (3 cases). There were 4 cases of Trisomy 21. Other causes included Nail Patella syndrome, Moebius syndrome, Larsen syndrome and Ito syndrome. In approximately 12% of cases, the underlying disorder remained undiagnosed despite thorough medical and genetic testing.

In cases of non-idiopathic CTEV, the mean starting Pirani score was 5.5 (out of 6). After serial casting and Achilles tenotomy, the average score was 2.0. Twenty-one of 46 feet (46%) ultimately required further surgical intervention (mostly posteromedial release). We found that certain conditions were more likely to be successfully treated with the Ponseti method – these included conditions characterised by ligamentous laxity such as Trisomy 21 and Ehlers Danlos syndrome. All patients showed some improvement in Pirani score after serial casting.

We believe that it is essential to attempt the Ponseti method of serial casting in all cases of CTEV. More than half of all non-idiopathic cases will not require further surgical intervention – and those that do are not as stiff thanks to the effects of serial casting. Thus, the surgery required is not as complex as it might otherwise have been. This is the largest series of its kind in the current medical literature.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 405 - 405
1 Jul 2010
O’Toole P Noonan M Byrne S Kiely P Noel J Fogarty E Moore D
Full Access

Introduction: Percutaneous epiphysiodesis is a well established procedure in the treatment of leg length discrepancy. Many techniques have been described ranging from an open technique to the more recently described percutaneous technique. This study assesses the percutaneous single portal technique, in combined distal femoral and proximal tibial lower limb epiphysiodesis, performed by a single surgeon.

Methods: We performed a retrospective review of cases performed in a single institution by a single surgeon from 1994 to present. A total of 45 combined epiphysiodesis were performed. 40 patients qualified for the study group with at least 2 years follow up. There were 19 female and 21 male patients, with the operative side equally shared between left and right.

Results: The mean predicted leg length discrepancy using the Mosley Straight Line Graph was 2.43 cm. The mean final leg length discrepancy, at an average follow up of 31 months, was 1.5 cm with a range of 0 to 2.81 cm. There were no angular deformities at follow up. One female patient had a knee effusion which resolved spontaneously. One male patient complained of anterior knee pain initially post surgery however this resolved at final follow up without treatment. The majority of patients (n=34) were inpatients, however more recently this procedure has been successfully carried out as a day case (n=6).

Discussion: Percutaneous epiphysiodesis has been accepted as a standard technique to treat leg length discrepancy of 2 cm to 5 cm. Several techniques have been described in the literature with varying complication rates. This study shows that single portal combined epiphysiodesis is successful and has a relatively low complication rate.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 405 - 405
1 Jul 2010
O’Toole P Noonan M North A Stratton J Kiely P Noel J Fogarty E Moore D
Full Access

Introduction: Bone transport, or distraction osteogenesis, is a recognised technique to reconstruct extensive bony defects resulting from excision of bony tumours. Ilizarov demonstrated bone formation under tension allowing the movement of a free segment of living bone to fill intercalary defects. This study assesses the use of bone transport in the management of patients with resectable long bone tumours.

Methods: We retrospectively reviewed patients who underwent bone transport in two institutions, performed by a single surgeon. A total of 14 patients were included in the study. There were 11 males and 3 females. Histological results demonstrated osteosarcoma (n=7), Ewing’s sarcoma (n=6), and parosteal chondrosarcoma (n=1). The site of the tumour was the femur and tibia in 8 and 6 cases respectively.

Results: Bone transport was fully completed in 9 patients. Of the 5 patients remaining, 3 are currently in cast, 1 is currently undergoing tibial lengthening, and 1 patient died from local recurrence and distant spread of disease. The average length of bone resected in the tibia was 11 cm (range 8–15 cm), while in the femur the average was higher at 16.5 cm (range 12–27 cm). All patients underwent autologous bone grafting of their docking site from either the anterior or posterior iliac crest on the ipsilateral side. The average time in frame was 24.8 months. One patient undergoing tibial bone transport fell and sustained an ipsilateral supracondylar femoral fracture which was successfully treated with an external ring fixator.

Discussion: Bone transport is a recognised method of reconstructing extensive bony defects and is beneficial for patients with a good prognosis. It is a specialised technique and requires a multidisciplinary approach. Other techniques can be less time consuming however distraction osteogenesis avoids the complications associated with prosthetic or allograft replacements.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 269 - 270
1 Sep 2005
Noel J Kutty S Goldberg CJ Groves D Moore DP Fogarty EE Dowling FE
Full Access

Background Data: Radiography has been the mainstay of patient monitoring in scoliosis, but there is an increasing demand for its reduction to specific situations where treatment is to be decided or modified. There is concern that substitution of traditional methods with clinical impression and surface topography might not be feasible or safe.

Study Design: An outcome study of a year’s intake of new patients with adolescent idiopathic scoliosis using a protocol derived from experience with surface topography.

Method: Tolerance limits for observer and subject variation and observed changes over time were established and correlated with recorded Cobb angle changes. A “derived Cobb angle” was calculated from topographic spinal angles and radiographs of 75 patients with non-congenital scoliosis and tested against 141 similar patients. Cobb angle = 15.3 + 1.22* topographic spinal angle. A protocol was adopted with topography at every clinic visit, radiography reserved for cases with severe deformity, additional symptoms or where surgical intervention was considered. This protocol was tested on new adolescent idiopathic scoliosis (AIS) presentations to the general clinic in a single year (2001) with regard to status at presentation and outcome (n=49).

Results: Measurement error, on the average of four repositioned scans on 105 consecutive patients rounded up to 10 units on all parameters. In 75 patients with non-congenital scoliosis, change ≥10° in Cobb angle was always accompanied by a similar change on at least one topographic parameter. The mean difference was −3.9°, SD 14.7, and was greater in very small, larger or double curves and in obese patients. There was significant correlation (p< 0.01) between changes in the Cobb angle over time and that derived from the spinal angle. 49 girls presenting with a presumptive diagnosis of AIS were diagnosed thus: Normal, n=8, 4 after radiograph, all now discharged; Asymmetry, n=24, no radiographs, 11 discharged immediately, 10 after 0.5 – 1.5 years, 3 lost; AIS, n=17, Cobb angle 10–93°, 5 surgery, 6 discharged, 4 currently followed, 2 non-attendees.

Discussion: The incomplete correlation is acceptable, since within-subject variation of the Cobb angle is unknown but the observer variation was shown by Carman et al (JBJS 72(A):328–333) to be over 8°. The discrepancy between actual and derived Cobb angles at the extremes is understandable as small curves are inflated by the obligatory constant, while increased subcutaneous tissue smoothes the surface, and both double and large curves show more rotation of vertebral bodies than of spinous processes. This can be tolerated because in small curves, prediction is made on maturity indicators rather than Cobb angle, while at higher values, cosmesis is the issue, small changes in Cobb angle are less relevant, and pubertal status determines progression potential more effectively than radiographic measures.

Conclusion: Topography and reduced use of radiography allows safe monitoring of adolescent idiopathic scoliosis. It provides a validated cosmetic score which documents deformity progression, is an adjunct to clinical decision making and is mathematically related to the Cobb angle. Basic clinical modalities and careful consideration of every patient on an individual basis are still essential.