This project proves that Patellofemoral (PF) joint degeneration is not a contraindication to medial unicompartmental knee replacement. Unicompartmental knee arthroplasty (UKA) is a recognised procedure for treatment of medial compartment osteoarthritis. Patellofemoral (PF) joint degeneration is widely considered to be a contraindication to medial unicompartmental knee replacement. We examined the validity of this preconception using information gathered prospectively on consecutive patients who underwent UKA using the Repicci II® UKA prosthesis for medial compartment osteoarthritis.Summary Statement
Introduction
Unicompartmental knee arthroplasty (UKA) is a recognized procedure for treatment of medial compartment osteoarthritis. Patellofemoral (PF) joint degeneration is widely considered to be a contraindication to medial unicompartmental knee replacement. We examined the validity of this preconception using information gathered prospectively on consecutive patients who underwent UKA using the Repicci II® UKA prosthesis for medial compartment osteoarthritis. We prospectively collected data on 147 consecutive patients who underwent the Repicci II® UKA for medial compartment osteoarthritis. All operations were performed between July 1999 and September 2000 by the same surgeon. The status of the PF joint was assessed intra-operatively in all patients, and accordingly patients were divided into two groups, one group with a normal PF joint, and the second group with degenerative changes of the PF joint. Variables measured for outcome included the International Knee Society (IKS) score, limb alignment, and range of motion. Radiographs were assessed for progression of disease or failure of implant. The mean follow-up was 9.4 years (range: 5–10.7 years). Patients were reviewed initially at 2 weeks, and then at 6 months post-operatively. They were subsequently reviewed on an annual basis. All patients completed an IKS score preoperatively and at last follow-up. Age, gender, BMI, length of hospital stay, perioperative complications, all subsequent surgery, including revision of the prosthesis, and survivorship at 10 years was recorded, and results of the 2 groups compared.Introduction
Methods
The advantages of unicompartmental knee arthroplasty (UKA) include its bone preserving nature, lower relative cost and superior functional results. Some temporary pain has been reported clinically following this procedure. Could this be related to bone remodeling? A validated bone remodeling algorithm may have the answers… A 3D geometry of an intact human cadaveric tibia was generated using CT images. An all poly unicompartmental implant geometry was positioned in an inlay and onlay configuration on the tibia and the post-operative models created. An adaptive bone remodeling algorithm was used with finite element modeling to predict the bone remodeling behavior surrounding the implant in both scenarios. Virtual DEXA images were generated from the model and bone mineral density (BMD) was measured in regions of interest in the AP and ML planes. BMD results were compared to clinical results. The bone remodelling algorithm predicted BMD growth in the proximal anterior regions of the tibia, with an inward tendency for both inlay and onlay models. Looking in the AP plane, a maximum of up to 7% BMD growth was predicted and in the ML plane this was as high as 16%. Minimal BMD loss was observed, which suggests minimal disturbance to the natural bone growth following UKA. Positron emission tomography (PET) scans showed active hot spots in the antero- medial regions of the tibia. These results were consistent with the finite element modeling results. Bone remodeling behavior was found to be sensitive to sizing and positioning of the implant. The adaptive bone remodeling algorithm predicted minimal BMD loss and some BMD growth in the anterior region of the tibia following UKA. This is consistent with patient complaint and PET scans.
Repair of chronic Achilles tendon rupture is technically complex. Flexor jallucis longus (FHL) and peroneus brevis (PB) tendon transfers have been described, but the mechanical properties of these tissues have not been well reported. The FHL, PB and tendo achilles (TA) tendons were harvested from 17 fresh frozen human cadavers free of gross pathology (mean age 69 years). Samples were tested in uniaxial tension at 100% per minute. Samples were secured using special jigs for the bony aspect or by freezing the tendons in cryogrips using liquid carbon dioxide. The peak load (N), linear stiffness (N/mm) and energy to peak load (N*mm) were determined. Mechanical data was analysed using one way analysis of variance (ANOVA) followed by a Games Howell multiple comparison post-hoc test. Fifty one tendons were harvested and mechanical testing was successfully completed in all samples apart from one PB that slipped from the grips during testing (sample was omitted from the analysis). The mean ultimate loads differed for each group, with the TA tendons being the strongest (1724.5 N ± 514.3) followed by FHL (511.0 N ± 164.3) and PB (333.1 N ± 137.2) (P<
0.05). Similar results were found with respect to energy, with TA tendons absorbing the most energy followed by FHL and PB (P<
0.05). Stiffness for the TA tendons (175.5 N/mm ± 94.8) was greater than FHL (43.3 N/mm ± 14.1) and PB (43.6 N/mm ± 18.9), which did not differ from each other. FHL is stronger than PB, but have similar stiffness. The mechanical properties of PB and FHL were both inferior to TA. Graft stiffness appears to be an important variable rather than ultimate load based on the clinical success of both techniques.
Treatment of chronic Achilles tendon ruptures can be technically demanding due to tendon retraction, atrophy and short distal stumps. Although rare, re-rupture following surgical treatment is a major late complication. Biomechanical studies on the strength of reconstructed Achilles tendon using autologous tendon grafts have not been well documented. This study examined the time zero in vitro mechanical properties of a reconstructed Achilles tendon (TA) using the peroneus brevis (PB) or the flexor hallucis longus (FHL) tendons in a human cadaver model (n=17). The TA was reconstructed using the same technique for all specimens. Biomechanical testing was performed using an MTS 858 Bionix testing machine and structural properties (failure load, stiffness and mode of failure) were determined. Average failure load was significantly higher in the PB-group (p=0.0116) (PB: 343.82 N (+/− 124.90 N, FHL: 241.54 N (+/− 82.17 N)). There was no significant difference in stiffness (p=0.212), (PB: 16.53 N/mm (+/− 6.25 N/mm), FHL: 14.00 N/mm (+/− 3.84 N/mm)) or energy (p=0.075). Mode of failure was the same for all specimens, with the tendon graft cutting through either the distal or proximal TA-stump. Reinforcement of these stumps could lead to increased failure loads. Based on the biomechanical data, the present study supports the use of either FHL or PB to reconstruction chronic TA tendon ruptures. The greater failures loads for PB may not be clinically relevant considering the peak loads. The addition of the suturing pattern, whilst is does reconstruct the tendon, does not provide a similar ability to resist the load.
Introduction: The curing of polymethylmethacrylate cement is an exothermic reaction, with temperatures reaching 80oC. Thus contact with cement can result in thermal injury. During orthopaedic procedures bone cement may be inadvertently left lying on surgical drapes. This study aims to investigate the effect of drapes on the contact temperature of such cement.