Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 25 - 25
1 May 2016
Baba Y Maruyama D Yamamoto K Nakagawa S Nakashima Y Nagayama N
Full Access

Introduction

Total knee arthroplasty (TKA) has achieved excellent clinical outcomes and functional performances. However, there is a need for greater implant longevity and higher flexion by younger and Asian patients. We determined the relationship between mobility and stability of TKA product because they are essential for much further functional upgrading. This research evaluated the geometry characteristics of femorotibial surfaces quantitatively by measuring their force of constraint by computer simulation and mechanical test.

Methods

We measured the force of constraint of femorotibial surfaces in order to evaluate the property of femorotibial surfaces. A total knee system was used for this evaluation, and has an asymmetrical joint surface, which restores the anatomical jointline in both sagittal and coronal planes, and is expected to permit normal kinematics, with cruciate-retaining fixed type.

We performed computer simulation using finite element analyses (FEA) and mechanical tests using knee simulator to measure the force of constraint regarding anterior-posterior (AP) and internal-external (IE) rotational direction in extension position, 90-degree flexion and a maximum flexion of 140-degree. In the FEA, Young's modulus and Poisson's ratio were set to 213 GPa and 0.3 for Co-Cr-Mo alloy as the femoral component, and 1 GPa and 0.3 for UHMWPe as the tibial insert, respectively. The force load to AP direction of tibial tray was measured when the femoral component moved plus or minus 10 millimeters. The moment load to IE rotational direction of tibial tray was measured when the femoral component moved plus or minus 20 degrees. The vertical load of 710 N was loaded on the femoral component during these measurements.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 36 - 36
1 May 2016
Shiomi T Yamamura M Takahashi S Suzuka T Nakagawa S
Full Access

The purpose of this study was to evaluate in vivo fit and fill analysis of tapered wedge-type stem in total hip arthroplasty (THA) with computed tomography (CT)-based navigation system. 100 THAs were all performed through the posterolateral approach, with patients in the lateral decubitus position. Each cohort of 50 consecutive primary cementless THAs with was compared with and without CT-based navigation system. The post-operative antero-posterior (AP) hip radiographs were obtained two weeks after the operation. All radiographic fit and fill measurements in the proximal and distal areas were analyzed by two of the authors who were both blinded to the use of CT-based navigation system. The type of the fit in the cementless stem was divided into three types. The fit of the stem was classified as Type I, if there was both proximal and distal engagement (maximum proximal to distal engagement difference of 2 mm or greater), Type II when there was proximal engagement only, and Type III when there was distal engagement only. The fill parameters such as mean stem-to-canal ratios and mean minimum and maximum gaps between the stems to the cortical bone in proximal and distal sections were compared. There was a significantly better overall canal fit obtained by THA with CT-based navigation system compared to without the navigation system (p<0.01). With CT-based navigation system, 42 of 50 stems (84%) were categorized as Type I fit compared to 31 of 50 stems (62%) without the navigation system. As to Type II fit, There are significantly more stems without the navigation system (26%) compared to with it (12%). There were better canal fills of the stems obtained by THA with CT-based navigation system both in proximal (94%) and distal sections (88%) of the femur compared to without the navigation system (proximal 88%/distal 82%) (p<0.05). Excellent radiographic fit and fill has been previously reported to potentially correlate with improved clinical outcomes. The stems obtained by THA with CT-based navigation system had a significantly better canal fit demonstrated by higher proportion of Type I and lower proportion of Type II fits, compared to without the navigation system. The stems with the navigation system had also significantly better proximal and distal canal fill.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 232 - 232
1 Dec 2013
Baba Y Yamamoto K Maruyama D Sugimoto T Nakagawa S Nakashima Y
Full Access

Background:

Total knee arthroplasty (TKA) has achieved excellent clinical outcomes and functional performances. However, younger and Asian patients require even greater implant longevity and higher flexion. It is necessary for much further functional upgrading to design TKA with mobility and stability. Therefore, we determined the relationship between mobility and stability of TKA.

Methods:

We evaluated the force of constraint of femorotibial surfaces in two types of designs in order to measure the property of femorotibial surfaces. The anatomical geometry knee (AGK) has an asymmetrical design, which restores the anatomical jointline in both sagittal and coronal planes, and is expected to permit normal kinematics, with cruciate-retaining fixed type. The functional designed knee (FDK) has a symmetrical design, and enhances concave femorotibial surfaces with cruciate-retaining mobile type.

We performed mechanical tests to measure the force of constraint regarding anterior-posterior (AP) and internal-external (IE) rotational direction in extension position, 90-degree flexion and a maximum flexion of 140-degree. The force load to AP direction of tibial tray was measured when the femoral component moved plus or minus 10 millimeters. The moment load to IE rotational direction of tibial tray was measured when the femoral component moved plus or minus 20 degrees. The vertical load of 710N has been loaded on the femoral component during this test.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 29 - 29
1 Mar 2012
Ichiseki T Kaneuji A Sugimori T Fukui K Kitamura K Mikami T Nakagawa S Matsumoto T
Full Access

Introduction

Recently, oxidative stress has been implicated in the development of osteonecrosis. Here we focused on vitamins with marked antioxidant potency to see whether their use might prevent the development of osteonecrosis associated with corticosteroid administration.

Methods

Fifteen male Japanese white rabbits weighing about 3.5 kg were injected once into the right gluteal muscle with methylprednisolone (MPSL) 40 mg/kg (S Group). Ten other rabbits, in addition, received consecutive daily intravenous injections of vitamin E 50 mg/kg starting from the day of MPSL administration (E Group), and 10 other animals similarly received consecutive daily intravenous injections of vitamin C 30 mg/kg (C Group). All animals were euthanized 2 weeks after MPSL administration, and femurs were extracted, and stained with hematoxylin-eosin. Blood levels of glutathione (GSH) were also measured.