Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 29 - 29
4 Apr 2023
Bolam S Konar S Zhu M Workman J Lim K Woodfield T Monk P Coleman B Cornish J Munro J Musson D
Full Access

Re-rupture rates after rotator cuff repair remain high because of inadequate biological healing at the tendon-bone interface. Single-growth factor therapies to augment healing at the enthesis have so far yielded inconsistent results. An emerging approach is to combine multiple growth factors over a spatiotemporal distribution that mimics normal healing. We propose a novel combination treatment of insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1) and parathyroid hormone (PTH) incorporated into a controlled-release tyraminated poly-vinyl-alcohol hydrogel to improve healing after rotator cuff repair. We aimed to evaluate this growth factor treatment in a rat chronic rotator cuff tear model.

A total of 30 male Sprague-Dawley rats underwent unilateral supraspinatus tenotomy. Delayed rotator cuff repairs were then performed after 3 weeks, to allow tendon degeneration that resembles the human clinical scenario. Animals were randomly assigned to: [1] a control group with repair alone; or [2] a treatment group in which the hydrogel was applied at the repair site. All animals were euthanized 12 weeks after rotator cuff surgery and the explanted shoulders were analyzed for biomechanical strength and histological quality of healing at the repair site.

In the treatment group had significantly higher stress at failure (73% improvement, P=0.003) and Young's modulus (56% improvement, P=0.028) compared to the control group. Histological assessment revealed improved healing with significantly higher overall histological scores (10.1 of 15 vs 6.55 of 15, P=0.032), and lower inflammation and vascularity.

This novel combination growth factor treatment improved the quality of healing and strength of the repaired enthesis in a chronic rotator cuff tear model. Further optimization and tailoring of the growth factors hydrogel is required prior to consideration for clinical use in the treatment of rotator cuff tears. This novel treatment approach holds promise for improving biological healing of this clinically challenging problem.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing.

A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively.

DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery.

DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 77 - 77
23 Feb 2023
Bolam S Konar S Gamble G Paine S Dalbeth N Monk A Coleman B Cornish J Munro J Musson D
Full Access

Traumatic rotator cuff injuries can be a leading cause of prolonged shoulder pain and disability, and contribute to significant morbidity and healthcare costs. Previous studies have shown evidence of socio-demographic disparities with these injuries. The purpose of this nationwide study was to better understand these disparities based on ethnicity, sex, and socio-economic status, in order to inform future healthcare strategies.

Accident Compensation Corporation (ACC) is a no-fault comprehensive compensation scheme encompassing all of Aotearoa/New Zealand (population in 2018, 4.7 million). Using the ACC database, traumatic rotator cuff injuries were identified between January 2010 and December 2018. Injuries were categorized by sex, ethnicity, age and socioeconomic deprivation index of the claimant.

During the 9-year study period, there were 351,554 claims accepted for traumatic rotator cuff injury, which totalled over $960 million New Zealand Dollars. The greatest proportion of costs was spent on vocational support (49.8%), then surgery (26.3%), rehabilitation (13.1%), radiology (8.1%), general practitioner (1.6%) and “Other” (1.1%). Asian, Māori (Indigenous New Zealanders), and Pacific peoples were under-represented in the age-standardized proportion of total claims and had lower rates of surgery than Europeans. Māori had higher proportion of costs spent on vocational support and lower proportions spent on radiology, rehabilitation and surgery than Europeans. Males had higher number and costs of claims and were more likely to have surgery than females. There were considerably fewer claims from areas of high socio-economic deprivation.

This large nation-wide study demonstrates the important and growing economic burden of rotator cuff injuries. Indirect costs, such as vocational supports, are a major contributor to the cost suggesting improving treatment and rehabilitation protocols would have the greatest economic impact. This study has also identified socio-demographic disparities which need to be addressed in order to achieve equity in health outcomes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing.

A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively.

DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery.

DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 85 - 85
1 Jul 2020
Cornish J Zhu M Young S Musson D Munro J
Full Access

No animal model currently exists for hip abductor tendon tears. We aimed to 1. Develop a large animal model of delayed abductor tendon repair and 2. To compare the results of acute and delayed tendon repair using this model.

Fourteen adult Romney ewes underwent detachment of gluteus medius tendon using diathermy. The detached tendons were protected using silicone tubing. Relook was performed at six and 16 weeks following detachment, histological analysis of the muscle and tendon were performed. We then attempted repair of the tendon in six animals in the six weeks group and compared the results to four acute repairs (tendon detachment and repair performed at the same time). At 12 weeks, all animals were culled and the tendon–bone block taken for histological and mechanical analysis.

Histology grading using the modified Movin score confirmed similar tendon degenerative changes at both six and 16 weeks following detachment. Biomechanical testing demonstrated inferior mechanical properties in both the 6 and 16 weeks groups compared to healthy controls.

At 12 weeks post repair, the acute repair group had a lower Movin's score (6.9 vs 9.4, p=0.064), and better muscle coverage (79.4% of normal vs 59.8%). On mechanical testing, the acute group had a significantly improved Young's Modulus compared to the delayed repair model (57.5MPa vs 39.4MPa, p=0.032)

A six week delay between detachment and repair is sufficient to produce significant degenerative changes in the gluteus medius tendon. There are significant histological and mechanical differences in the acute and delayed repair groups at 12 weeks post op, suggesting that a delayed repair model should be used to study the clinical problem.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 69 - 69
1 Nov 2018
Zhu M Thambyah A Tuari D Callon K Tay M Patel D Coleman B Cornish J Musson D
Full Access

Surgical repair of rotator cuff tears have high failure rates (20–70%), often due to a lack of biological healing. Augmenting repairs with extracellular matrix-based scaffolds is a common option for surgeons, although to date, no commercially available product has proven to be effective. In this study, a novel collagen scaffold was assessed for its efficacy in augmenting rotator cuff repair. The collagen scaffold was assessed in vitro for cytocompatability and retention of tenocyte phenotype using alamarBLUE assays, confocal imaging and real-time PCR. Immunogenicity was assessed in vitro by the activation of pre-macrophage cells. In vivo, using a modified rat rotator cuff defect model, supraspinatus tendon repairs were carried out in 46 animals. Overlay augmentation with the collagen scaffold was compared to unaugmented repairs. At 6- and 12-weeks post-op the repairs were tested biomechanically to evaluate repair strength, and histologically for quality of healing. The collagen scaffold supported human tenocyte growth in vitro, with cells appearing morphologically tenocytic and expressing higher tendon gene markers compared to plastic controls. No immunogenic responses were provoked compared to suture material control. In vivo, augmentation with the scaffold improved the histological scores at 12 weeks (8.37/15 vs. 6.43/15, p=0.0317). However, no significant difference was detected on mechanical testing. While the collagen scaffold improved the quality of healing of the tendon, a meaningful increase in biomechanical strength was not achieved. This is likely due to its inability to affect the bone-tendon junction. Future materials/orthobiologics must target both the repaired tendon and the regenerating bone-tendon junction.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 121 - 121
1 Nov 2018
Musson D
Full Access

All cells exist within a 3D microenvironment where they are exposed to a multitude of mechanobiological cues, from nano-level cell/matrix interactions, to tissue-level mechanical strain. These cues are fundamental to maintaining tissue homeostasis, but when disrupted during disease, can promote pathological outcomes and impair healing. This is particularly true in tendons; 3D load bearing connective tissue structures composed of a complex arrangement of matrix proteins, organised in a highly aligned manner and maintained by tendon cells (tenocytes). When diseased or injured (termed tendinopathy), the tendon begins a journey of poor healing, characterised by mechanically inferior disorganised scar tissue which ultimately results in compromised or total loss of function. In both health and disease, the mechanobiological stimuli experienced by tenocytes will directly affect their behaviour, yet this is a poorly studied area of research. We have used decellularised tendon slices to mimic the structure of healthy tendon, and induced degradation to mimic tendinopathic tendon. We have re-seeded these slices with tenocytes or immune cells and are building a greater picture of the role that the structure and stiffness of the matrix has on cell behaviour in health and disease.