Recent studies on animal models focused on the effect of preserving tendon remnant of rotator cuff on tendon healing. A positive effect by combining tendon remnant preservation and small bone vents on the greater tuberosity in comparison with standard tendon-to-bone repair has been shown. The purpose of the present clinical study was to evaluate the efficacy of biologic augmentation of arthroscopic rotator cuff repair by maintaining tendon remnant on rotator cuff footprint combined with small bone vents of the greater tuberosity. A retrospective study was conducted. All patients who underwent arthroscopic rotator cuff repair associated with small bone vents (nanofractures) and tendon footprint preservation were considered eligible for the study. Inclusion criteria were: diagnosis of full-thickness rotator cuff tear as diagnosed at preoperative magnetic resonance imaging (MRI) and confirmed at the time of surgery; minimum 24-month of follow-up and availability of post-operative MRI performed not earlier than 6 months after surgery. Exclusion criteria were: partial thickness tears, irreparable tears, capsulo-labral pathologies, calcific tendonitis, gleno-humeral osteoarthritis and/or previous surgery. Primary outcome was the ASES score. Secondary outcomes were: Quick-DASH and WORC scores, and structural integrity of repaired tendons by magnetic resonance imaging (MRI) performed six months after surgery. A paired t-test was used to compare pre- and postoperative clinical outcomes. Subgroup analysis was performed according to tear size. Significance was set at p < 0.05. The study included 29 patients (M:F = 15:14). Mean age (+ SD) of patients was 61.7 + 8.9 years. Mean follow-up was 27.4 ± 2.3 months. Comparison between pre- and postoperative functional scores showed significant clinical improvement (p < 0.001). Subgroup analysis for tear size showed significant differences in the QuickDASH score (0.04). Particularly, a significant difference in the QuickDASH score could be detected between medium and large tears (p=0.008) as well as medium and massive lesions (p=0.04). No differences could be detected between large and massive tears (p= 0.35). Postoperative imaging showed healed tendons in 21 out of 29 (72%) cases. Preservation of tendon remnant combined with small bone vents in the repair of medium-to-massive full-thickness rotator cuff tears provided significant improvement in clinical outcome compared to baseline conditions with complete structural integrity in 72% of the cases.
Rotator cuff repair has excellent clinical outcomes but continues to be a challenge when it comes to large and massive tears as well as revision procedures. Reported symptomatic retear rates are still too high to be acceptable. The purpose of the present study was to evaluate the effectiveness of a combination of augmentation techniques consisting of microfractures of the greater tuberosity, extracellular matrix (ECM) patch graft and subsequent platelet concentrate (PC) subacromial injections in revision rotator cuff repair. The study was designed as a retrospective comparative study on prospectively collected data from a consecutive cohort of patients. All patients who underwent arthroscopic revision rotator cuff repair for symptomatic failure of previous posterosuperior rotator cuff repair were considered eligible for the study. Symptomatic failure had been diagnosed according to clinical examination and confirmed by magnetic resonance imaging (MRI). Structural integrity had been assessed on MRI and classified according to Sugaya classification. Only patients affected by stage IV-V were considered eligible. Tear reparability was confirmed during arthroscopy. Only patients with a minimum 2 years follow-up were included. Patients were divided in two groups. In group 1 (control group) a standard arthroscopic revision and microfractures of the greater tuberosity were performed; in group 2 (experimental group), microfractures of the greater tuberosity and a ECM patch graft were used to enhance tendon repair, followed by postoperative PC injections. Minimum follow-up was 12 months. Primary outcome was the Constant-Murley score (CMS) normalized for age and gender. Subjective outcome was assessed with the Disabilities of the Arm, Shoulder and Hand (DASH) score in its short version (Quick-DASH). Tendon integrity was assessed with MRI at 6 months after surgery. Comparison between groups for all discrete variables at baseline and at follow-up was carried out with the Student's t-test for normally distributed data, otherwise Mann-Whitney U-test was used. Within-group differences (baseline vs follow-up) for discrete variables were analyzed by paired t-test, or by Wilcoxon signed-rank test in case of data with non-normal distribution. Differences for categorical variables were assessed by chi-squared test. Significance was considered for p values < 0.05. Forty patients were included in the study (20 patients for each group). The mean follow-up was 13 ± 1.6 months. No patients were lost at the follow up. Comparison between groups did not show significant differences for baseline characteristics. At follow-up, mean CMS was 80.7 ± 16.6 points in group 1 and 91.5 ± 11.5 points in group 2 (p= 0.022). Mean DASH score was 28.6 ± 21.6 points in group 1 and 20.1 ± 17.4 points in group 2 (p= 0.178). Post-operative MRI showed 6 healed shoulders in Group 1 and 16 healed shoulders in Group 2 (p<0.004). No postoperative complications were reported in both groups. The combination of microfractures of the greater tuberosity, ECM patch graft, and subsequent PC subacromial injections is an effective strategy in improving tendon healing rate.
Glenoid and humeral head bone defects have long been recognized as major determinants in recurrent shoulder instability as well as main predictors of outcomes after surgical stabilization. However, a universally accepted method to quantify them is not available yet. The purpose of the present study is to describe a new CT method to quantify bipolar bone defects volume on a virtually generated 3D model and to evaluate its reproducibility. A cross-sectional observational study has been conducted. Forty CT scans of both shoulders were randomly selected from a series of exams previously acquired on patients affected by anterior shoulder instability. Inclusion criterion was unilateral anterior shoulder instability with at least one episode of dislocation. Exclusion criteria were: bilateral shoulder instability; posterior or multidirectional instability, previous fractures and/or surgery to both shoulders; congenital or acquired inflammatory, neurological, or degenerative diseases. For all patients, CT exams of both shoulders were acquired at the same time following a standardized imaging protocol. The CT data sets were analysed on a standard desktop PC using the software 3D Slicer. Computer-based reconstruction of the Hill-Sachs and glenoid bone defect were performed through Boolean subtraction of the affected side from the contralateral one, resulting in a virtually generated bone fragment accurately fitting the defect. The volume of the bone fragments was then calculated. All measurements were conducted by two fellowship-trained orthopaedic shoulder surgeons. Each measurement was performed twice by one observer to assess intra-observer reliability. Inter and intra-observer reliability were calculated. Intraclass Correlation Coefficients (ICC) were calculated using a two-way random effect model and evaluation of absolute agreement. Confidence intervals (CI) were calculated at 95% confidence level for reliability coefficients. Reliability values range from 0 (no agreement) to 1 (maximum agreement). The study included 34 males and 6 females. Mean age (+ SD) of patients was 36.7 + 10.10 years (range: 25 – 73 years). A bipolar bone defect was observed in all cases. Reliability of humeral head bone fragment measurements showed excellent intra-observer agreement (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good interobserver agreement (ICC: 0.89, CI 95%: 0.80 – 0.94). Similarly, glenoid bone loss measurement resulted in excellent intra-observer reliability (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good inter-observer agreement (ICC: 0.84, CI 95%:0.72 – 0.91). In conclusion, matching affected and intact contralateral humeral head and glenoid by reconstruction on a computer-based virtual model allows identification of bipolar bone defects and enables quantitative determination of bone loss.
Torsional changes in the lower limbs represent a serious clinical problem. The evaluation of the physiological development of the relationship between femur and tibia in the axial plane is necessary for final assessment. The authors observed 940 patients aged from 4 to 15 years to identify the most important modifications of torsion of the lower limbs during paediatric age. Clinical examination includes assessment in the standing and supine position and observation of the gait features so that the physiological-pathological borderline can be defined, along with peculiar aspects of single and combined deformities, in order to identify indications for osteotomy. The types of torsion are classified as: (1) isolated augmentation of femoral anteversion; (2) isolated reduction of femoral anteversion; (3) isolated medial tibial torsion; (4) isolated lateral tibial torsion; and (5) combined torsion (femoral anteversion combined with lateral tibial torsion). The anatomy and the natural progression of femoral and tibial torsion can be assessed by clinical methods. Radiographic methods such as axial CT views are indicated in cases in which clinical examination does not provide clear information and, in particular, if qualitative and quantitative diagnosis is required in order to establish the therapeutic protocol. The authors conclude by suggesting that the physiological development of torsion should be followed up to skeletal maturity in order to make a general evaluation and to decide on treatment.
The Q angle is defined as the angle formed by a line passing from the anterior-superior iliac spine and the centre of the patella and another line passing this point to the centre of the tibial tuberosity. Normal values reported in the literature for the Q angle widely range between 12.7° (± 0.72°) and 18.8° (± 4.7°). This variability depends on individual anatomical variations and method of measurement as well. In fact, several factors can affect the measurement of Q angle. The correct evaluation is carried out with a goniometer, in supine position and the knee in full extension. Q angle evaluation can be biased by standing position and quadriceps contraction, which can increase the Q angle; in contrast, knee flexion can reduce it. Furthermore, it has been demonstrated that the Q angle increases from external to internal rotation of the tibia, while it decreases from pronation to supination of the foot. Finally, patellar malalignment in the horizontal plane, such as subluxation or dislocation, causes a decrease in the Q angle, as the centre of the patella is laterally shifted. The accuracy of Q angle measurement can be also affected by an error in identifying the anatomical landmarks. An error in Q angle measurement below 5° requires an error in setting the anatomical landmarks of no greater than 2 mm. Several authors have shown that the Q angle is greater in females, as the proximal landmarks are more lateral and a greater valgus alignment is necessary to reestablish a correct mechanical axis of the limb. According to the side, there is no evidence that Q angle is symmetric. The clinical significance of the Q angle is controversial. An increased Q angle was considered for a long time as the main cause of anterior knee pain and an important risk factor for patella subluxation or dislocation. Some authors showed a correlation between Q angle increase and symptomatic patellar chondromalacia. However, others showed no significant differences in Q angle values between symptomatic and asymptomatic patients. Presently, there is not sufficient clinical evidence that an increased Q angle predisposes to knee problems. Furthermore, it is impossible to assert that all the alterations of the extensor mechanism are exclusively due to an increase in the Q angle, as they can depend on other factors, such as: functional overloading of the knee, muscle and ligament insufficiency, bone and chondral morphological changes, malalignment or asymmetric length of the inferior limbs and foot alterations. In conclusion, a homogeneous method of measurement and correct data interpretation are necessary to clarify the conundrum of Q angle. Moreover, it is important to understand that patellofemoral malalignment is not always the cause of knee pain and instability. This can reduce the risk of performing surgical procedures of extensor mechanism realignment that are technically perfect but potentially harmful.