Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims

Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques.

Methods

Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 75 - 75
1 Apr 2018
Matsuura M Schmidutz F Sprecher C Müller P Chevalier Y
Full Access

Introduction

Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method.

Materials and Methods

Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal)


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 89 - 89
1 May 2011
Okamoto Y Ohashi H Inori F Okajima Y Fukunaga K Tashima H Matsuura M
Full Access

Introduction: In total hip arthroplasty, the angle of acetabular component is a critical factor for the postoperative dislocation and the longevity of prostheses. The angle is principally determined in relation to anterior pelvic plane. It is reported that the pelvis tends to tilt posteriorly along with aging. Furthermore, the pelvic tilt might change after THA. The changes might be infiuenced by the hip condition and lumbar lordosis. We measured the pelvic tilt and the lumbar lordosis, and evaluated the effects of contralateral hip and lumbar lordosis on pelvic tilt after THA.

Materials and Methods: Fifty-one unilateral patients and 30 bilateral patients were enrolled in this study. The diagnosis was dysplastic osteoarthritis in all patients. In unilateral patients, the hip was affected in one side and the other hip was normal or acetabular dysplasia without symptoms. In bilateral patients, THAs in both hips were done within two months.

Pelvic inclination angle (PIA) and lumbar lordotic angle (LLA) were measured on the standing lateral X-rays before operation and 1-month, 6-month and 1-year post-operation. The effects of patient age, BMI, ROM of the hip, preoperative PIA and LLA on the changes of PIA were statistically investigated using multiple linear regression analysis. We divided the patients into three groups with regard to pre-operative PIA (anterior group: PIA < 0, intermediate group: 0 < PIA < 10, posterior group: PIA > 10) and with regard to pre-operative LLA (insufficient group: LLA < 20, moderate group: 20 < LLA < 40, severe group: LLA > 40).

Results: Overall, significant factor was only preoperative PIA. In bilateral cases, preoperative PIA and patient age affected the changes of PIA after THA. In patients with severe lordosis, preoperative PIA and LLA were significant factors. PIA increased in anterior tilt group and PIA did not change in intermediate group, while PIA gradually decreased in posterior group. In insufficient lordosis group, PIA remarkably increased after THA compared with that in severe group.

Discussion: Pelvic tilt after THA has been reported without considering the conditions of contralateral hip and lumbar spine. By categorizing patients with regard to the conditions of hips and lumbar spine, we can prospect the tendency of the direction of PIA changes. These results indicated that pre-operative PIA was related the changes of PIA in bilateral group. PIA slightly increased in all bilateral patients, PIA tended to close each other in unilateral patients. Further investigation is necessary to prospect the estimated PIA value after THA.