Short-stem total hip arthroplasty (THA) has primarily been recommended for young and active patients, mainly due to its bone preserving philosophy. Elderly patients, however, may also benefit of a minimally invasive technique due to the short and curved implant design. The purpose of this study was to compare the clinical and radiological outcomes as well as perioperative complications of a calcar-guided short stem between a young (75 years) population. Data were collected in a total of 5 centers, and 400 short stems were included as part of a prospective multicentre observational study between 2010 and 2014 with a mean follow-up of 49.2 months. Clinical and radiological outcomes were assessed in both groups. Secondary outcomes such as perioperative complications, rates and reasons for stem revision were also investigated. No differences were found for the mean visual analogue scale (VAS) values of rest pain, load pain, and satisfaction. Harris Hip Score (HHS) was found to be slightly better in the young group. Comparing both groups, no statistically significant differences ere found in the radiological parameters that were assessed (stress-shielding, cortical hypertrophy, radiolucency, osteolysis). Aseptic loosening was the main cause of implant failure in younger patients whereas in elderly patients, postoperative periprosthetic fractures due to accidental fall was found to be the main cause for stem revision. These short-term results are encouraging towards the use of a cementless short stem in the geriatric population. According to our findings, advanced age and potentially reduced bone quality should not necessarily be considered as contra-indications for calcar-guided short-stem THA but careful and reasonable selection of the patients is mandatory. Longer follow up is necessary in order to draw safer conclusions.
Although the number of displaced femoral neck fractures treated with hip arthroplasty is steadily growing, the outcomes are not as good as for other surgical indications. As a result, there is no consensus on the ideal type of arthroplasty for these patients. Unipolar and bipolar arthroplasty have a low dislocation rate but implant longevity and functional results are suboptimal. Total hip arthroplasty (THA) provides better functional outcomes and implant longevity but it is associated with a high incidence of postoperative dislocation. This constitutes a significant limiting factor for a more widespread use of this procedure. The TriboFit® Buffer (Active Implants Corporation, Memphis, Tennessee, USA) is a 2.7 mm-thick cup made of polycarbonate-urethane which mimics the mechanical characteristics of human cartilage. It is a pliable, hydrophilic, biocompatible, endotoxin-resistant material and acts as a stress-absorber, transmitting loads to the subchondral bone in a physiological manner. The TriboFit® Buffer shows excellent tribology, including ideal fluid film lubrication, low friction, high load carrying capabilities and long endurance. The TriboFit® Buffer is fixed using flexible mechanical fixation. With a special instrument, a circumferential groove is cut into the patients’ socket. The TriboFit® Buffer is seated by applying gentle pressure, with its ledge snapping tightly into the groove. The surgical technique is bone sparing as no acetabular bone reaming is required whatsoever. The TriboFit® Buffer can be coupled with large diameter cobalt-chromium femoral prosthetic heads of the same dimensions as the patients’ femoral head. By restoring the correct hip anatomy and preserving the original size of the femoral head, hip range of motion (ROM) and stability are optimised. Within a multi-centre study, 224 patients (63 male and 161 female) with femoral neck fractures were treated with the TriboFit® Buffer, a large diameter head and either cemented (192) or uncemented femoral stems (32). The mean patient age was 83 years (range 65 to 96). All surgeries were performed using a standard antero-lateral approach. Rehabilitation was fast and weight-bearing was as tolerated by the patients. There were no major complications, and in particular, no postoperative dislocations were reported. At a mean follow-up of one year, X-rays showed good implant stability. The mean Harris hip score (HHS) after one month was 58 points and increased to 80 points at one year (p = <
0.05). The ROM was the same as in the intact hip. Only one patient was revised because of nonimplant-related pain. This patient complained of pain in the surgically treated limb which was in actual fact related to spinal stenosis. Analysis of the retrieved implant revealed a loss of thickness in the superior area as well as minimal weight (approximately 2.4%). The backside revealed evidence of macroscopic wear in the area of directional loading from the femoral head to the acetabulum. The bearing surface showed minimal wear (less than 15 mm3), indicating that the primary wear location was on the backside. Retrieved synovial fluid and tissue analysis confirmed that there was no reactivity and no sign of synovitis. With femoral neck fracture patients, TriboFit® Buffer arthroplasty is theoretically superior to both hemiarthroplasty and THA as it should involve the same low risk of dislocation and acetabular bone preservation associated with hemiarthroplasty, together with the same good functional results and consistent implant longevity of THA. Other advantages of this technique include reduced bleeding and short surgical times. The results of this study show that the new TriboFit® Buffer arthroplasty technology has the potential to revolutionize the surgical treatment of displaced femoral neck fracture.
Novel scaffolds were developed using a well-known poly-L/D-lactide copolymer with L/D-monomer ratio 96/4 (PLDLA) in collaboration with the Institute of Biomaterials at Tampere University of Technology and Tampere University Hospital. The PLDLA scaffolds are fibrous, porous cylinders enabling the in-growth of fibrous tissue, which then ideally forms a new, functional joint for the patient. Meltspun PLDLA scaffolds retain 50% of their strength at least 13 weeks in vitro. This enables to retain the shape and size of the scaffolds in situ long enough for tissue ingrowth. The scaffold will bioabsorb and be replaced with fibrous tissue in approximately 2–3 years.