Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. These so-called biomaterial-associated infections (BAI) are mainly caused by Medical grade titanium implants were dip-coated in subsequent solutions of hyperbranched polymer, polyethyleneimine and 10 mM sodium iodide, and ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era.
The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. For still not well understood reasons, the presence of a foreign body strongly increases susceptibility to infection. These so-called biomaterial-associated infections (BAI) are mainly caused by Medical grade titanium implants (10×4×1 mm) were dip-coated in a solution of 10% (Aim
Method