header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 31 - 31
2 Jan 2024
Negri S Yea J Gomez-Salazar M Onggo S Li Z Thottappillil N Cherief M Xing X Qin Q Tower R Fan C Levi B James A
Full Access

Heterotopic ossification (HO) is defined as aberrant bone formation in extraskeletal locations. In this process, local stromal cells of mesenchymal origin abnormally differentiate, resulting in pathologic cartilage and bone matrix deposition. However, the specific cell type and mechanisms beyond this process are not well understood, in part due to the heterogeneity of progenitor cells involved. Here, a combination of single cell RNA sequencing (scRNA-Seq) and lineage tracing, defined the extent to which synovial / tendon sheath progenitor cells contribute to HO. For this purpose, a Tppp3 (tubulin polymerization-promoting protein family member 3) inducible reporter model was used, in combination with either Scx (Scleraxis) or Pdgfra (Platelet derived growth factor receptor alpha) reporter animals. Both arthroplasty-induced and tendon injury-mouse experimental HO models were utilized. ScRNA-Seq of tendon-induced traumatic HO suggested that Tppp3 is a progenitor cell marker for either osteochondral or tendon or cells. After HO induction, Tppp3 reporter+ cell population expanded in number and contributed to cartilage and bone formation in tendon and joint-associated HO. Using double reporter animals, we found that both Pdgfra+Tppp3+ and Pdgfra+Tppp3- progenitor cells produced HO-associated cartilage. Finally, the examination of human samples showed a significant population of TPPP3+ cells overlapping with osteogenic markers in areas of HO. Overall, these results provide novel observations that peritenon and synovial progenitor cells undergo abnormal osteochondral differentiation and contribute to heterotopic bone formation after trauma.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 118 - 118
2 Jan 2024
Meng H Verrier S Grad S Li Z
Full Access

Pericytes are contractile, motile cells that surround the capillary. Recent studies have shown that pericytes promoted joint fibrosis and induced subchondral bone angiogenesis, indicating the role of pericytes in osteoarthritis (OA). However, whether pericytes are involved in regulating inflammatory and catabolic response, as well as fibrotic repair of cartilage is still unclear. Here we used 2D and 3D models to investigate the communication of pericytes and chondrocytes under inflammatory osteoarthritis conditions.

CD34-CD146+ pericytes were isolated and sorted from human bone marrow. Human OA chondrocytes were isolated from OA joints. In 2D studies, monolayer cultured chondrocytes were treated +/- pericyte conditioned media, +/- 1ng/ml IL1β for 24h. In 3D studies, pericytes and chondrocytes were cultured within fibrin gel in 3D polyurethane scaffolds, separately or combined for 7 days, followed by treatment of +/- IL1β for another 7 days (Fig 2A). The inflammatory response, catabolic activity and expression of fibrosis markers of chondrocytes and pericytes were measured by ELISA and/or q-rtPCR.

Pericytes had weak inflammatory, catabolic and fibrotic response to IL1β (data not shown). The 2D study showed that pericyte conditioned media promoted inflammation, catabolism and fibrosis markers of chondrocytes, in the absence of IL1β treatment (Figure 1). However, study in 3D showed that coculture of chondrocytes and pericytes reduced the inflammatory and catabolic response of chondrocytes to IL1β and induced fibrosis markers in chondrocytes (Figure 2).

Pericytes are involved in regulating inflammatory response, catabolic response and fibrosis of chondrocytes. The opposite results from 2D and 3D experiments indicate the variety of the regulatory role of pericytes in the interaction with chondrocytes within different culture models. The underlying mechanism is under evaluation with on-going studies.

Acknowledgements

This study was funded by SINPAIN project, from European Union's Horizon Europe research and innovation programme under Grant Agreement NO. 101057778. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 44 - 44
2 Jan 2024
Ciftci E Grad S Alini M Li Z
Full Access

Osteoarthritis (OA) is the most prevalent degenerative joint disease that is a leading cause of disability worldwide. Existing therapies of OA only address the symptoms. Liraglutide is a well-known anti-diabetic medication that is used to treat type 2 diabetes and obesity. In inflammatory and post-traumatic OA animal models, liraglutide has demonstrated anti-inflammatory, pain-relieving, and cartilage-regenerating effects1 . The objective of this study is to investigate liraglutide's ability to reduce inflammation and promote anabolism in human OA chondrocytes in vitro. Pellets formed with human OA chondrocytes were cultured with a chondrogenic medium for one week to form cartilage tissue. Afterward, pellets were cultured for another 2 weeks with a chondropermissive medium. The OA group was treated with IL-1β to mimic an inflammatory OA condition. The drug group was treated with 0.5 or 10 µM liraglutide. On days 0, 1, and 14, pellets were collected. Conditioned medium was collected over the 2 weeks culture period. The gene and protein expression levels of regenerative and inflammatory biomarkers were evaluated and histological analyzes were performed. Results showed that the nitric oxide release of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were lower than the OA group. The DNA content of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were higher than the OA group on day 14. The RT-qPCR results showed that the anabolism (ACAN, COMP, and COL2) markers were higher expressed in the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups when compared with the OA group. The inflammation (CCL-2 and IL-8) markers and catabolism markers (MMP-1, MMP-3, ADAMTS4, and ADAMTS5) had lower expression levels in the OA + liraglutide groups compared to the OA group. The histomorphometric analysis (Figure 1) supported the RT-qPCR results. The results indicate that liraglutide has anabolic and anti-inflammatory effects on human OA chondrocyte pellets.

Acknowledgments: This project has received funding from the Eurostars-2 joint program with co-funding from the European Union Horizon 2020 research and innovation program. The funding agencies supporting this work are (in alphabetical order of participating countries): France: BPI France; Germany: Project Management Agency (DLR), which acts on behalf of the Federal Ministry of Education and Research (BMBF); The Netherlands: Netherlands Enterprise Agency (RVO); Switzerland: Innosuisse (the Swiss Innovation Agency).

For any figures and tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 54 - 54
11 Apr 2023
Šećerović A Ristaniemi A Cui S Li Z Alini M Weder G Heub S Ledroit D Grad S
Full Access

A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending.

An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test).

The new model retained a high level of cell viability after three weeks of in vitro culture (outer annulus fibrosus 82%, inner annulus fibrosus 69%, nucleus pulposus 75%) and maintained the typical values of IVD height reduction after loading (≤ 10%). The holder-IVD interface reached the following highest average values in the tested configurations: 320.37 N in compression, 431.86 N in tension, 1.64 Nm in torsion, and 0.79 Nm in bending.

The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 119 - 119
1 Nov 2018
Günay B Isa IM Conrad C Scarcelli G Grad S Li Z Pandit A
Full Access

The degeneration of the intervertebral disc (IVD) is the primary cause for low back pain, which is treated with surgical interventions such as spinal fusion. A strategy to develop a regenerative and non-invasive treatment requires an injectable cell carrier system. Our efforts have focussed on developing a hyaluronan (HA)-based hydrogel system that can be used as a carrier for therapeutic agents in annulus fibrosus (AF) repair. High molecular weight HA at 20mM is chemically crosslinked with varying concentrations of 4-arm PEG. Hydrogels were optimised for degree of crosslinking, stability and rheological properties. Subsequently, the morphology and viability of the human AF cells encapsulated in the hydrogels were studied. The highest crosslinking was seen with 4-arm PEG at 1:1 HA:PEG molar ratio. This was the most stable against enzymatic and hydrolytic degradation, and had greater swelling property, which is desired as the degeneration decreases the water retention capability of the IVD. The gelation time, important for in situ injectability, was under five minutes for all formulations. Storage modulus was between 0.4–1.1 kPa. Compared to 2D cultures, cells were rounder after encapsulation, mimicking the native microenvironment, and had the similar metabolic activity for seven days. AF cells encapsulated in HA/4-arm PEG hydrogel were stiffer compared to the nucleus pulposus (NP) cells encapsulated similarly as measured with Brillouin microscopy. The 4-arm PEG crosslinked HA-based hydrogel system promises to be a candidate for an injectable carrier for cells for AF repair and regeneration.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 8 - 8
1 Mar 2012
Li Z Zhang N Sun W Wang B
Full Access

Introduction

Multifocal osteonecrosis (ON) was defined by Mont et al. as a disease involving three or more anatomic sites. Few papers have been published on the Chinese experience. The purpose of this study was to characterize the experience with multifocal ON in order to make an earlier diagnosis for more patients with this disorder.

Methods

From 2003 to 2008, thirty nine patients with multifocal ON were identified in our clinical practice. Among them, thirty seven patients were post-SARS rehabilitating patients and two patients were found in clinic. All patients had a history of high dose corticosteroid therapy. The diagnosis was done by magnetic resonance imaging (MRI) and radiographs. All patients were treated by drug or other joint-salvaging procedure. Three patients had bilateral total hip arthroplasties.