Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 67 - 67
1 Jan 2011
Al-Hajjar M Jennings LM Leslie IJ Fisher J
Full Access

Ceramic-on-ceramic total hip replacements (THRs) have shown low wear volumes in standard gait hip simulator studies1. However clinical reports have indicated a variation in wear rates and formation of stripe wear on the ceramic femoral heads2. The aim of this study was to investigate the influence of different clinical conditions such as cup inclination angle and microseparation (head offset deficiency) on the wear of ceramic-on-ceramic THRs. The six station Leeds II hip joint simulator was used to investigate the wear of size 28mm ceramic-on-ceramic bearing couples. The alumina matrix composite ceramic material (AMC, Biolox Delta, CeramTec AG, Germany) was used in this study. The lubricant used was 25% bovine serum. The study was carried out for a total of five million cycles; the first two million cycles under standard gait conditions and a further three million cycles under microseparation conditions. During microseparation, a lateral movement of 0.5mm was applied to the cup relative to the head during the swing phase of the gait cycle3. Three of the cups were mounted to provide a clinical angle of 55°, which is referred to as the ‘standard’ condition; and the other three cups were mounted to provide a clinical angle of 65°, which is referred to as the ‘steep angle’ condition. These combinations provided four different testing conditions: standard, steep cup angle, microseparation, and combination of steep cup angle and microseparation conditions. Volumetric wear was determined gravimetrically and statistical analysis was performed using One Way ANOVA (significance at p< 0.05). Increasing the cup inclination angle from 55° to 65° had no significant effect on the wear rate in Biolox Delta ceramic-on-ceramic THRs under both standard (p> 0.42) and microseparation (p> 0.55) conditions. Under standard gait conditions, the mean wear rate for both cup inclination angles was very low at 0.05 mm3/million cycles. The introduction of microseparation to the standard gait cycle significantly increased the mean wear rates (p< 0.01) to 0.13 mm3/ million cycles for the ‘standard’ cup inclination angle of 55° and 0.11 mm3/million cycles for the ‘steep’ cup inclination angle of 65°. A stripe of wear on the head also formed, with corresponding superior rim wear on the cup. For comparison, the steady state wear rate of HIPed third generation alumina ceramic (Biolox Forte) under microseparation conditions was 1.3 mm3/million cycles [4]. In conclusion, increasing the cup inclination angle by 10° had no influence on the wear rate of Biolox Delta ceramic-on-ceramic bearings. The introduction of microseparation conditions significantly increased the wear rate and resulted in stripe-like wear on the femoral head, which has previously been observed on retrieved ceramic prosthesis. However, these wear rates were still low, and were ten times lower than those previously reported for Biolox Forte.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 398 - 398
1 Jul 2010
Jennings LM Al-Hajjar M Leslie IJ Fisher J
Full Access

Introduction: There is increasing interest in the use of ceramic on ceramic bearings for hip replacement, due to recognition of their extremely low wear and biocompatibility of the wear debris [1].

The aim of this study was to investigate the influence of cup inclination angle and head position on the wear of ceramic-on-ceramic total hip replacements.

Methods: The wear of Biolox Delta alumina matrix composite ceramic (CeramTec AG, Germany) was investigated using the six station Leeds II Physiological Anatomical hip joint simulator, using 25% bovine serum as a lubricant. Three ceramic-on-ceramic bearings were mounted with the cup providing a clinical angle of 55o (representing the standard condition) and three were mounted to provide a clinical angle of 65o (representing the steep cup angle condition). Simulator studies were carried out under standard gait conditions for 2 million cycles, and under micro-separation conditions for a further 3 million cycles. Micro-separation and dynamic lateralisation of the position of the head replicate head/cup rim contact at heel strike and simulate stripe wear on a ceramic femoral head as found on ceramic-on-ceramic retrievals [2]. Volumetric wear was determined gravimetrically and statistical analysis was performed using One Way ANOVA.

Results: There was no difference in the wear rates under standard gait conditions for the standard and steep cup angles, with a wear rate of 0.05 mm3/million cycles. Under micro-separation conditions the wear rates increased significantly to 0.13 and 0.11 mm3/million cycles for the standard and steep cup angles respectively. However, there was no significant difference between the standard and steep cup angle groups.

Discussion: Micro-separation and dynamic lateralisation of the position of the head during gait simulation significantly increased wear. However, the inclination of the cup in ceramic-on-ceramic THRs did not have a significant effect on the wear under either standard gait or micro-separation conditions.