header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 196 - 196
1 Jul 2014
Lozano D López-Herrradón A Portal-Núñez S Ardura J Vila M Sánchez-Salced S Mulero F Gómez-Barrena E Vallet-Regí M Esbrit P
Full Access

Summary Statement

Parathytorid hormone-related protein (107–111) loaded onto biopolymer-coated nanocrystalline hydroxyapatite (HAGlu) improves the bone repair in a cavitary defect in rat tibiae.

Introduction

Biopolymer-coated nanocrystalline hydroxyapatite (HAGlu) made as macroporous foams are promising candidates as scaffolds for bone tissue engineering applications. They exhibit optimal features, promoting internalization, proliferation and differentiation of osteoprogenitors, with an adequate cell colonization over the entire scaffold surface. Parathyroid hormone-related protein (PTHrP) is an important modulator of bone formation. Its 107–111 epitope (osteostatin) exhibits osteogenic properties at least in part by directly acting on osteoblasts. The main aim of this study was to evaluate whether osteostatin loading into HAGlu scaffolds might improve their bone regeneration capacity.