Periprosthetic femur fractures are a serious complication after hip replacement surgery. In an aging population these fractures are becoming more and more common. Open reduction and plate osteosynthesis is one of the available treatment options. To investigate hip stem stability and cement mantle integrity under cyclic loading conditions after plate fixation with screws perforating the cement in the proximal fragment.Introduction
Objective
Periprosthetic femur fractures are severe complications after hip arthroplasty. There is a high re-operation rate due to malunion, refracture and stem loosening. Fixation is more rigid when screws are used for proximal fixation of the plate instead of cables. Screws penetrating the cement mantle may damage it and induce loosening of the prosthesis stem. The usage of larger diameter drills can prevent cement damage during screw insertion. There is only little loss in pull-out resistance using larger drills. A metal rod (diameter: 13 mm) was cemented into a transparent plastic tube (diameter: 25 mm), leaving a homogeneous cement layer of 6mm. Drills of different diameters (4.3 mm, 4.3 mm + tapping, 4.5 mm, 4.8 mm) were used to implant uni- and bicortical locking screws (all 5mm outer and 4.4mm core diameter) into the cement layer. Locking head screws (LHS: Synthes, Switzerland), periprosthetic locking screws (PPLS: Synthes, Switzerland) and NCB mulitidirectional locking screws (NCB: Zimmer, USA) were used. The onset of cracks was visually monitored during drilling, tapping and screw implantation. Pull-out resistance was measured on each screw. No crack appeared after implantation of any unicortical screw. No cracks appeared after drilling for bicortical screws. Cracks appeared after tapping or inserting bicortical screws (62.5% of the cases). Increasing the drill diameter reduces the risk of cement mantle cracks (to 25%). Bicortical screws had the highest pull-out resistance (median 3015N compared to 1250N for unicortical screws). Screws with a flat tip, smaller flute or double thread showed higher pullout forces. Unicortical screws can be implanted without damaging the cement. Bicortical screws have higher pull out resistance but bear the risk of cement mantle damage. For insertion of bicortical screws a 4.5 mm drill should be considered instead the usual 4.3 mm one. New screws should be developed for unicortical fixation of periprosthetic fractures combining favorable design properties. Further studies should follow to investigate crack formation and loosening after cyclic loading.Hypotheses
Overlap between the distal tibia and fibula has always been quoted
to be positive. If the value is not positive then an injury to the
syndesmosis is thought to exist. Our null hypothesis is that it
is a normal variant in the adult population. We looked at axial CT scans of the ankle in 325 patients for
the presence of overlap between the distal tibia and fibula. Where
we thought this was possible we reconstructed the images to represent
a plain film radiograph which we were able to rotate and view in
multiple planes to confirm the assessment. Objectives
Methods
The main problem of modern total hip replacement is the reduction of wear debris. Hence, new tribological partners such as ceramic on ceramic, metal on highly crosslinked polyethylene and metal on metal have evolved. Of these new combinations metal on metal has the longest history. The early problems of high friction using a “micro-fit” between acetabulum and femoral head have been solved by introducing an optimal clearance between the head and the cup to allow for small deformations of the acetabulum during activities without locking. The annual wear rate of metal on metal combinations has been shown to be extremely low ranging from 2 to 5 micrometers/year only. A further advantage of Metasul may be the “wearing in of small scratches” as well as forgiving slight malpositions of the acetabulum, which is not the case in ceramic – ceramic combinations. However, Metasul should not be implanted in patients with renal failure or severe allergies. Metal-metail pairing has proven a valuable alternative in young and active patients over the last 10 years.
Fracture healing results in increased markers of bone turnover and callus formation. The exact patterns of these changes after different type and locations of fractures as well as weight bearing are unknown. Bone markers and the callus index were measured prospectively for 6 month following osteosynthesis of different fractures of the lower limb. Serum and urin samples were collected at day 0, 1, 3, 7 and after 2, 6, 12 and 24 weeks. X-rays were taken direct postoperatively and after 6 and 24 weeks. Labarotory parameters for bone formation were: bone-specific alkaline phosphatase (BnAP), Osteocalcin (OC), procollagen type I N- and type III C-terminal propeptide (PINP, PIIICP); markers for bone resorption were: free and peptid-bound forms of urinary pyridinium crosslinks (Dpd, Pyr,), N – terminal propeptides of type I collagen (NTx). All fractures healed within 6 month without complications.