header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 123 - 124
1 Mar 2009
Matziolis G Krocker D Tohtz S Perka C
Full Access

While significant component malalignment in the frontal and sagittal plane may lead to early loosening and pain, even small errors in the rotational component alignment are not tolerated due to its complex impact on knee joint kinematics and especially the patella tracking. It is accepted that navigated implantation of total knee arthroplasties improves accuracy in the frontal plane but it is yet unclear weather navigation leads to a more precise rotational component alignment. The study evaluated the influence of navigated implantation on femoral and tibial component alignment.

In a prospective randomized study 32 navigated and 28 conventionally implanted total knee arthroplasties were evaluated through a postoperative CT scan. In all cases the femoral component was referenced to the surgical epicondylar axis and the tibial component was referenced to the medial third of the tibial tuberosity. The angles between these bone landmarks and the components were measured on the CT scans and compared between both study groups.

The rotational malalignment of the femoral component in the conventional operating technique was 0.1° ± 2.2° (range 3.3° of internal rotation and 5.0° of external rotation). Navigated implanted femoral components showed a malalignment of 0.3° ± 1.4° (range 4.7° of internal rotation and 2.2° of external rotation), the difference was not significant. The rotational malalignment of the tibial component in the conventional technique was 7.5° ± 6.0° (range 27.1° of internal rotation and 15° of external rotation). Navigated implanted tibial components showed a malalignment of 6.9° ± 4.7° (range 21.2° internal rotation and 11.0° external rotation), the difference was not significant.

In conclusion the use of a navigation system did not improve the rotational alignment of the tibial or femoral component if only one bone landmark was used. Taking the relatively small errors of a navigation machine into account the error is attributable to the surgeon, who seems to be unable to precisely define bone landmarks. More than one landmark (e.g. additionally Whiteside’s line, posterior condyles, flexion gap for the femur and ankle joint for the tibia) should be used to define the component rotations. Consideration of different rotational landmarks is best done with a navigation system that, in contrast to the manual technique, has the possibility to show the degree of deviation of the components from each landmark.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 130 - 130
1 Mar 2006
Tuischer J Matziolis G Krocker D Duda G Perka C
Full Access

Background Osteopontin (OPN), also known as bone sialoprotein I or secreted phosphoprotein 1, is a major non-collagenous bone matrix protein. A broad distribution has been detected in embryonic bone, osteoid, and fracture callus [Nomura et al. 2000] pointing out its central role in bone development and healing. It remains unclear weather mechanical conditions influence OPN synthesis and thereby osteoprogenitor cell differentiation. We investigated OPN mRNA-levels of bone marrow derived mesenchymal stem cells (bm-MSC) cultured in a previously described compression bioreactor (CBR) [Matziolis et al. under review] under dynamic compression (DC).

Materials Bm-MSCs of 5 different individuals (mean age 61y) were seeded in a fibrin-alginate mix-matrix placed between two slices of lyophyliced cancellous bone. One group of constructs (n=10) underwent DC with 7kPa at 0.05 Hz, resulting in a matrix compression of 1mm at an heigh of 5mm, for 24 hours in the CBR. Constructs cultured under similar conditions but without DC served as control group (n=10). mRNA was extracted out of each construct after ending the DC, following the Trizol®-protocol. After cDNA-synthesis, GEArray Q series (Human Osteogenesis Gene Arrays) were performed and normalized versus GAPDH.

Results We found an increase of OPN-expression in all dynamically compressed matrices. In the DC-group we found a mean of 5-fold increase of OPN mRNA compared to the control group (median: 0.43 vs. 0.09, p< 0.001).

Discussion and Conclusion The results of this study demonstrate that an in vitro DC of bm-MSCs for 24 hours leads to an increased expression of OPN. We conclude that DC is an important element of early fracture healing by increasing the expression of OPN and thereby modulating progenitor cell differentiation immediately after mechanical instability caused by a fracture.