Defects in annulus fibrosus induced by needle puncture can compromise mechanical integrity of the disc and lead to degeneration in animal models. This study examined the immediate and short-term mechanical and biological response to annulus injury through needle puncture using small and large gauge needles in a bovine organ culture system. Bovine caudal intervertebral discs were harvested, assigned to one of two needle puncture groups (small = 25G, N=11; large = 14G, N=12) or an unpunctured control group (N=10), and cultured in organ culture for 6 days. After measuring initial heights, diameters, and wet weights, discs were placed in an organ culture chamber and incubated with constantly circulating media in standard culture conditions under a 0.2 MPa static load. Discs underwent a daily dynamic compression loading protocol for five days from 0.2 – 1 MPa at 1 Hz for one hour. Disc structure and function were assessed with measurements of dynamic modulus, creep, height loss, water content, proteoglycan loss to the culture medium, cell viability and histology. Needle insertion caused a rapid decrease in dynamic modulus and increase in creep during one hour of loading, although no changes were detected in water content, disc height, or proteoglycan lost to the media. Cell viability was maintained except for localised cell death at the needle insertion site. An increase in cell number and possible remodelling response was seen in the insertion site in the nucleus pulposus. Relatively minor disruption in the disc from needle puncture had immediate and progressive mechanical and biological consequences with important implications for the use of needle puncture in discography, and repair/regeneration techniques. Results also suggest diagnostic techniques sensitive to mechanical changes in the disc may be important for early detection of degenerative changes in response to annulus injury.