Our aim was to investigate whether it is possible to predict post-operative kinematics (Post-Ope) from intra-operative kinematics (Intra-Ope) after total knee arthroplasty. Our study were performed for 11 patients (14 knees) who underwent primary PS TKA using CT-based navigation system between Sept.2012 and Sept.2014. The mean subject age was 71.5 ± 5.5 years at the time of surgery. Intra-Ope was measured using the navigation system after implantation during passive full extension and flexion imposed by the surgeon. Under fluoroscopic surveillance, each patient was asked to perform sequential deep knee flexion under both non-weight bearing (NWB) and weight bearing (WB) conditions from full extension to maximum flexion. To estimate the spatial position and orientation, we used a 2- to 3- dimensional (2D3D) registration technique. Intra-Ope and Post-Ope had a common coordinate axis for bones. Evaluations were range of motion (ROM), external rotation angles (ER). The level of statistical significant difference was set at 0.05. Mean ROM in Intra-Ope(130°± 7.9°) was statistically larger than both NWB(121.1°±10.5°) and WB(124.0°±14.7°). No Statistically significant difference was found in the mean ER from 10° to 120° among Intra-Ope (11.2°± 8.5°) and NWB(7.1°±6.0°) and WB(5.3°±3.2°). It is suggested that we could predict Post-Ope from Intra-Ope by considering the increase of the range of motion due to the muscle relaxation condition and the amount of change in the ER.
Bi-cruciate stabilized (BCS) TKA is the prosthesis that aims to substitute bi-cruciate ligament with post-cam engagement. We estimated to describe the
There are few studies that have compared between continuous flexion activities and extension activities of normal knees. The purpose of this study is to compare
In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during high-flexion activities, varied according
to activity. We investigated the Aims
Materials and Methods
The purpose of this study is to investigate the three-dimensional (3D) kinematics of normal knees in deep knee-bending motions like squatting and kneeling. Material & Methods: We investigated the in vivo kinematics of 4 Japanese healthy male volunteers (8 normal knees in squatting, 7 normal knees in kneeling). Each sequential motion was performed under fluoroscopic surveillance in the sagittal plane. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femur and tibia from single-view fluoroscopic images. We evaluated the femoral rotation relative to the tibia and anteroposterior (AP) translation of the femoral sulcus and lateral epicondyle on the plane perpendicular to the tibial mechanical axis. Student's t test was used to analyze differences in the absolute value of axial rotation and AP translation of the femoral sulcus and lateral epicondyle during squatting and kneeling. Values of P < 0.05 were considered statistically significant. During squatting, knees were gradually flexed from −2.8 ± 1.3° to 145.5 ± 5.1° on average. Knees were gradually flexed from 100.8 ± 3.9° to 155.6 ± 3.2° on average during kneeling. Femurs during squatting displayed sharp external rotation relative to the tibia from 0° to 30° of flexion and it reached 12.5 ± 3.3° on average. From 30° to 130° of flexion, the femoral external rotation showed gradually, and it reached 19.1 ± 7.3° on average. From 130° to 140° of flexion, it was observed additionally, and reached 22.4 ± 6.1° on average. All kneeling knees displayed femoral external rotation relative to the tibia sharply from 100° to 150° of flexion, and it reached 20.7 ± 7.5° on average. From 100° to 120° of flexion, the femoral external rotation during squatting was larger than that during kneeling significantly. From 120° to 140° of flexion, there was no significant difference between squatting and kneeling. The sulcus during squatting moved 4.1 ± 4.8 mm anterior from 0° to 60° of flexion. From 60° of flexion it moved 13.6 ± 13.4 mm posterior. The sulcus during kneeling was not indicated significant movement with the knee flexion. The lateral epicondyle during squatting moved 39.4 ± 7.7 mm posterior from 0° to 140° of flexion. The lateral epicondyle during kneeling moved 22.0 ± 5.4 mm posterior movement from 100° to 150° of flexion. In AP translation of the sulcus from 100° to 140° of flexion, there was no significant difference between squatting and kneeling. However in that of the lateral epicondyle, squatting groups moved posterior significantly. Even if they were same deep knee-bending, the kinematics were different because of the differences of daily motions. The results in this study demonstrated that in vivo kinematics of deep knee-bending were different between squatting and kneeling.
In February 2004, our institute began to perform routine cervical CT scans in addition to head CT examinations on patients with blunt head trauma who had received high energy injuries. We present the findings of 108 patients who underwent a routine cervical CT within the last year and the usefulness of routine cervical CT examinations is discussed. The present report is, to our knowledge, the only prospective study to examine the utility of routine cervical CT examinations. Among the patients admitted to the emergency room of our institute after receiving high energy injuries, 108 patients had blunt head trauma and underwent a routine cervical CT examination in addition to the head CT examination specified by our original protocol for cervical clearance. The mechanism of injury and the presence of cervical bone lesions were noted in each case. 76 males and 32 females ranging in age from 13 to 77 years (average, 41.0 years) were included in the study. Among these 108 cases, cervical fractures or subluxation were visible in 5 cases on plain films. Although no fractures were seen on the plain films taken in the remaining 103 cases, the additional cervical CT examinations demonstrated 14 cervical fractures in 13 (12.6%) of these cases. For patients with blunt head trauma, a cervical CT examination is not usually performed if no evidence of a cervical fracture is found on plain films and no neurological deficits are present. Nevertheless, the present findings suggest that many cervical fractures may have been missed on plain films in the past, and the routine inclusion of a cervical CT examination in addition to a head CT examination might be appropriate in the evaluation of patients with blunt head trauma who have been involved in a high energy injury.