After fixation of the device on the lower extremity and positioning of the patient in the starting position the device was first externally and then internally rotated at an applied torque of 5,10 and 15 Nm. To decrease the measurement error the procedure was repeated 5 times. Afterwards 5 measurements were performed by a second examiner in the same way to measure the inter-observer reliability. All 30 patients were measured again after a mean of 31 ± 43 days by the same examiners to test the intra-observer reliability. Statistical analysis was performed using the intra class correlation coefficient (ICC). Pearson correlation coefficient were used to compare the measurements of the left and the right knee.
The comparison of the measurements of the left and the right knee showed high Pearson correlation (.90) at all applied torques.
For the medial meniscus, the mean coincidence of insertion area and tunnel footprint was 88.4 ± 15.5 % for the anterior horn insertion and 60.3 ± 31.6 % for the posterior horn insertion. The mean distance between the borders of insertion area and tunnel footprint was 0.8 ± 0.8 mm for the anterior horn insertion and 2.1 ± 1.4 mm for the posterior horn insertion.
The patient group treated with an intra-articular glucocorticoid injection series also showed significant improvements for the Constant and Murley Score (p<
.0001), the Simple Shoulder Test (p<
.0001) and the visual analog scales for pain, function and patient satisfaction (p<
.0001) after 4 weeks and also at any other follow up. Significant improvements were also seen in abduction (p<
.0001), flexion (p<
.0001) and external rotation (p=.001) and internal rotation (p=.035) after 4 weeks of treatment. These results were confirmed at any other follow up. Comparison of the two treatment regimen showed superior short term results for the intra-articular treatment regimen in range of motion, Constant Score and Simple Shoulder Test and patient satisfaction (p<
.05). No significant differences were found in the visual analog scales for pain and function (p>
.05).
Implantation of antibiotic-loaded beads is accepted as an efficient option for local antibiotic therapy in orthopedic-related infections. However, recent reports have emphasized the bacteria growth persistence on antibiotic-impregnated bone cement. Hence, the aim of this study was to elaborate if bacterial adherence and growth could be determined on explanted gentamicin- and gentamicin-vancomycin-loaded beads after infection eradication. 18 chains of antibiotic-loaded beads (11 gentamicin-, 7 gentamicin-vancomycin-loaded) were examined. Indications for primary beads implantation included postoperative infections after total hip or knee arthroplasty, rotator cuff reconstruction, chronic foot osteomyelitis, anterior cruciate ligament reconstruction and dorsal spondylodesis. Among the isolated organisms, Staphylococcus epidermidis, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) were the most frequent ones. In 4 cases (3 × S. epidermidis, 1 × MRSA) bacteria growth persistence could be determined on the beads. S. epidermidis-strains persisted only on gentamicin-loaded beads, MRSA could grow on gentamicin-vancomycin-impregnated cement. In one case, the emergence of a gentamicin-resistant S. epidermidis-strain could be observed despite preoperative susceptibility. Bacteria growth persistence on bone cement is a hazardous problem in the orthopedic surgery and should therefore be born in mind. Adherence to cement can lead to emergence of bacteria resistance despite preoperative antibiotic susceptibility and might result in clinical recurrence of infection.
Sutures are the strongest and the only time proven technique for meniscal repair. Sutures are safe and without surprises as long as the peroneal and the saphenus nerves are protected and avoided. Sutures can be placed via arthrotomy or under arthroscopic view. In pure suture techniques a sling holds the meniscus parts together or refixes the meniscus to the capsule. The orientation of the sling can be vertical, horizontal or oblique, but should always either catch the circumferential fibre bundles of the meniscal tissue or part of the densely woven meniscal surface. Suture related techniques make use of a thread but do not strive to form a sling. The earliest of these was the knot-end technique, the latest one is the Fastfix? repair. Either absorbable or non-absorbable material has been recommended but most would favour non-absorbable threads of 0 or 1–0 USP sizes. Depending on the course of the needle inside-out, outside-in and all-inside techniques have been described. For repair of intrasubstance tears the sutures have to be supplemented by measures to enhance healing as trephination of the meniscal periphery or addition of a fibrin clot to the repair side. There are regions of the menisci that are close to impossible to reach for the suture cannulas. For these it seems better to do a non-suture reconstruction with some of the innovative devices compared to leaving them alone or do meniscectomy instead of repair. Hybrid meniscal rapair, combining the advantages of sutures and new repair devices are in frequent use.