Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 19 - 19
1 Feb 2021
Wakelin E Plaskos C Shalhoub S Keggi J DeClaire J Lawrence J Koenig J Randall A Ponder C
Full Access

Introduction

Achieving a balanced joint with neutral alignment is not always possible in total knee arthroplasty (TKA). Intra-operative compromises such as accepting some joint imbalance, non-neutral alignment or soft-tissue release may result in worse patient outcomes, however, it is unclear which compromise will most impact outcome. In this study we investigate the impact of post-operative soft tissue balance and component alignment on postoperative pain.

Methods

135 patients were prospectively enrolled in robot assisted TKA with a digital joint tensioning tool (OMNIBotics with BalanceBot, Corin USA) (57% female; 67.0 ± 8.1 y/o; BMI: 31.9 ± 4.8 kg/m2). All surgeries were performed with a PCL sacrificing tibia or femur first techniques technique, using CR femoral components and a deep dish tibial insert (APEX, Corin USA). Gap measurements were acquired under load (average 80 N) throughout the range of motion during trialing with the tensioning tool inserted in place of the tibial trial. Component alignment parameters and post-operative joint gaps throughout flexion were recorded. Patients completed 1-year KOOS pain questionnaires. Spearman correlations and Mann-Whitney-U tests were used to investigate continuous and categorical data respectively. All analysis performed in R 3.5.3.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 22 - 22
1 Feb 2020
Lawrence J Keggi J Randall A DeClaire J Ponder C Koenig J Shalhoub S Wakelin E Plaskos C
Full Access

Introduction

Soft-tissue balancing methods in TKA have evolved from surgeon feel to digital load-sensing tools. Such techniques allow surgeons to assess the soft-tissue envelope after bone cuts, however, these approaches are ‘after-the-fact’ and require soft-tissue release or bony re-cuts to achieve final balance. Recently, a robotic ligament tensioning device has been deployed which characterizes the soft tissue envelope through a continuous range-of-motion after just the initial tibial cut, allowing for virtual femoral resection planning to achieve a targeted gap profile throughout the range of flexion (figure-1). This study reports the first early clinical results and patient reported outcomes (PROMs) associated with this new technique and compares the outcomes with registry data.

Methods

Since November 2017, 314 patients were prospectively enrolled and underwent robotic-assisted TKA using this surgical technique (mean age: 66.2 ±8.1; females: 173; BMI: 31.4±5.3). KOOS/WOMAC, UCLA, and HSS-Patient Satisfaction scores were collected pre- and post-operatively. Three, six, and twelve-month assessments were completed by 202, 141, and 63 patients, respectively, and compared to registry data from the Shared Ortech Aggregated Repository (SOAR). SOAR is a TJA PROM repository run by Ortech, an independent clinical data collection entity, and it includes data from thousands of TKAs from a diverse cross-section of participating hospitals, teaching institutions and clinics across the United States and Canada who collect outcomes data. PROMs were compared using a two-tailed t-test for non-equal variance.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 1 - 1
1 Feb 2020
Plaskos C Wakelin E Shalhoub S Lawrence J Keggi J Koenig J Ponder C Randall A DeClaire J
Full Access

Introduction

Soft tissue releases are often required to correct deformity and achieve gap balance in total knee arthroplasty (TKA). However, the process of releasing soft tissues can be subjective and highly variable and is often perceived as an ‘art’ in TKA surgery. Releasing soft tissues also increases the risk of iatrogenic injury and may be detrimental to the mechanically sensitive afferent nerve fibers which participate in the regulation of knee joint stability.

Measured resection TKA approaches typically rely on making bone cuts based off of generic alignment strategies and then releasing soft tissue afterwards to balance gaps. Conversely, gap-balancing techniques allow for pre-emptive adjustment of bone resections to achieve knee balance thereby potentially reducing the amount of ligament releases required. No study to our knowledge has compared the rates of soft tissue release in these two techniques, however. The objective of this study was, therefore, to compare the rates of soft tissue releases required to achieve a balanced knee in tibial-first gap-balancing versus femur-first measured-resection techniques in robotic assisted TKA, and to compare with release rates reported in the literature for conventional, measured resection TKA [1].

Methods

The number and type of soft tissue releases were documented and reviewed in 615 robotic-assisted gap-balancing and 76 robotic-assisted measured-resection TKAs as part of a multicenter study. In the robotic-assisted gap balancing group, a robotic tensioner was inserted into the knee after the tibial resection and the soft tissue envelope was characterized throughout flexion under computer-controlled tension (fig-1). Femoral bone resections were then planned using predictive ligament balance gap profiles throughout the range of motion (fig-2), and executed with a miniature robotic cutting-guide. Soft tissue releases were stratified as a function of the coronal deformity relative to the mechanical axis (varus knees: >1° varus; valgus knees: >1°). Rates of releases were compared between the two groups and to the literature data using the Fischer's exact test.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 21 - 21
1 Feb 2020
DeClaire J Lawrence J Keggi J Randall A Ponder C Koenig J Shalhoub S Wakelin E Plaskos C
Full Access

Background

Achieving good ligament balance in total knee arthroplasty (TKA) is essential to prevent early failure and revision surgery. Poor balance and instability are well-defined, however, an ideal ligament balance target across all patients is not well-understood. In this study we investigate the achieved ligament balance using an imageless, intra-operative dynamic balancing tool and its relation to patient reported outcomes.

Methods

A prospective, multi-surgeon, multi-center study investigated the use of a dynamic ligament-balancing tool in combination with a robotic-assisted navigation platform using the APEX knee (OMNI-Corin, Raynham MA). After all resections, the femoral trial and a computer-controlled tensioning device in place of the tibial tray was inserted into the knee joint. The difference in medial and lateral (ML) gaps when balancing the knee under constant load at extension (10°), mid-flexion (30°) and flexion (90°) was captured. Patients completed the KOOS questionnaire at 3 months ± 2 weeks post-surgery and considered the past 7 days as a timeframe for responses. Pearson's correlation was used to determine linear correlations between factors and ANOVA tests were used to determine differences in categorical data.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 7 - 7
1 Feb 2020
Wakelin E Shalhoub S Lawrence J DeClaire J Koenig J Ponder C Randall A Keggi J Plaskos C
Full Access

Introduction

Achieving a well-balanced midflexion and flexion soft tissue envelope is a major goal in Total Knee Arthroplasty (TKA). The definition of soft tissue balance that results in optimal outcomes, however, is not well understood. Studies have investigated the native soft tissue envelope in cadaveric specimen and have shown loosening of the knee in flexion, particularly on the lateral side. These methods however do not reflect the post TKA environment, are invasive, and not appropriate for intra-operative use. This study utilizes a digital gap measuring tool to investigate the impact of soft tissue balance in midflexion and flexion on post-operative pain.

Methods

A prospective multicenter multi-surgeon study was performed in which patients underwent TKA with a dynamic ligament-balancing tool in combination with a robotic-assisted navigation platform. All surgeries were performed with APEX implants (Corin Ltd., USA) using a variety of tibia and femur first techniques. Gap measurements were acquired under load (average 80 N) throughout the range of motion during trialing with the balancing tool inserted in place of the tibial trial. Patients completed KOOS pain questionnaires at 3months±2weeks post-op. Linear correlations were investigated between KOOS pain and coronal gap measurements in midflexion (30°–60°) and flexion (>70°). T-tests were used to compare outcomes between categorical data.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 86 - 86
1 Mar 2017
Plaskos C Dabuzhsky L Gill P Jevsevar D Keggi J Koenig J Moschetti W Sydney S Todorov A Joly C
Full Access

We introduce a novel active tensioning system that can be used for dynamic gap-based implant planning as well as for assessment of final soft tissue balance during implant trialing. We report on the concept development and preliminary findings observed during early feasibility testing in cadavers with two prototype systems.

System description

The active spacer (fig 1) consists of a motorized actuator unit with integrated force sensors, independently actuated medial and lateral upper arms, and a set of modular attachments for replicating the range of tibial baseplate and insert trial sizes. The spacer can be controlled in either force or position (gap) control and is integrated into the OMNIBoticsTM Robotic-assisted TKA platform (OMNI, MA, USA).

Cadaver Study

Two design iterations were evaluated on eleven cadaver specimens by seven orthopaedic surgeons in three separate cadaver labs. The active spacer was used in a tibial-first technique to apply loads and measure gaps prior to and after femoral resections. To determine the range of forces applied on the spacer during a varus/valgus assessment procedure, each surgeon performed a varus/valgus stress test and peak medial and lateral forces were measured. Surgeons also rated the feel of the stability of the knee at 50N and 80N of preload using the following scale: 1 – too loose; 2 – slightly loose; 3 – ideal; 4 slightly tight; 5 – too tight. Final balanced was assessed with the spacer and with manual trial components.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 79 - 79
1 Feb 2017
Cooper J Koenig J Hepinstall M Rodriguez J
Full Access

Introduction

Prosthetic replacement remains the treatment of choice for displaced femoral neck fractures in the elderly population, with recent literature demonstrating significant functional benefits of total hip arthroplasty (THA) over hemiarthroplasty. Yet the fracture population also has historically high rates of early postoperative instability when treated with THA. The direct anterior approach (DAA) may offer the potential to decrease the risk of postoperative instability in this high-risk population by maintaining posterior anatomic structures. The addition of intraoperative fluoroscopy can improve precision in component placement and overcome limitations on preoperative planning due to poor preoperative radiographs performed in the emergency setting.

Methods

We retrospectively reviewed clinical and radiographic outcomes of 113 consecutive patients with displaced femoral neck fractures treated by two surgeons over a five-year period. All underwent surgery via the DAA using fluoroscopic guidance, and were allowed immediate postoperative weight bearing without any hip precautions or restrictions. Charts were reviewed for relevant complications, while radiographs were reviewed for component positioning, sizing, and leg length discrepancy. Mean follow-up was 8.9 months.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 115 - 115
1 May 2016
Koenig J
Full Access

Insall, Laskin and others have taught us that the goal of successful total knee replacement (TKR) is to have well fixed and fitted components in a neutral mechanical axis (MA) with balanced soft tissues. Computer and robotic assisted (C-RAS) TKR with real time validation is an excellent tool to help you to attain these goals. Ritter and others have shown higher early failure rates with TKR's where the final alignment is outside a 3-degree window of the neutral MA. Dalury and Schroer have each shown higher early failure rates in TKR's with postoperative instability and or malalignment. C-RAS TKR helps prevent and significantly lowers the number of TKR outliers that may go on to early aseptic loosening and failure as compared with traditional methods.

This featured video was created to show how surgeons can benefit from real-time validation and the kinematic data provided during C-RAS. The system helps in their intraoperative decision-making process and then guides them to make precise bone cuts and balance the soft tissue envelope in a very time efficient and highly repeatable fashion. Additionally, imageless C-RAS breaks away from the paradigm of pre-operative MRI or CT scan imaging studies by no longer requiring such costly procedures. This relatively easy, simple to learn, and cost-efficient procedure is a valuable asset in the operating room, for both the surgeon and patient. Furthermore, it is highly customizable and easily integrated into any surgeon's workflow, technique, and exposure. The viewer will learn the C-RAS TKR simple workflow of Tracking, Registration, Navigation, and Validation.

The results of the previously published abstract “Influence of Pre-Operative Deformity on Surgical Accuracy and Time in Robotic-Assisted TKA” JA Koenig; C Plaskos; BJJprocs.boneandjoint.org.uk 95-B/SUPP28/62 2013, will also be presented at the end of the video. Finally many have argued that C-RAS TKR is an excellent method to teach the “ART of TKR” to young surgeons, residents and students as they can see with real time validation and data the immediate consequences and effects of their intra-operative actions and maneuvers.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 62 - 62
1 Aug 2013
Koenig J Plaskos C
Full Access

Introduction

We evaluated the utility of imageless computer-navigation coupled with a miniature robotic-cutting guide for managing large deformities in TKA. We asked what effect did severe pre-operative deformities have on post-operative alignment and surgery time using the system. We also report on the early functional outcomes of this group of patients.

Methods

This was a retrospective cohort study of 128 TKA's performed by a single surgeon (mean age: 71y/o [range 53–93], BMI: 31.1 [20–44.3], 48males). Patients were stratified into three groups according to their pre-operative coronal plane deformity: Neutral or mild deformity <10((baseline group); Severe varus ≥10(; severe valgus ≥10(; and according to the degree of flexion contracture: Neutral or mild flexion from −5(hyperextension to 10(flexion (baseline group); hyperextension ≤−5(, and severe flexion ≥10. (The degree of deformity and final postoperative alignment achieved was measured using computer navigation in all patients and analysed using multivariate regression. The APEX CR/Ultra Knee System (OMNIlife Science, Inc.) was used with the PRAXIM Navigation system in all cases. A students t-test was used to compare pre- and post-operative (3–6 months) Knee Society Scores (KSS) and Knee Functional Scores (KSSF) for all patients.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 305 - 305
1 Mar 2013
Koenig J Plaskos C
Full Access

Introduction

Severe angular deformities in total knee arthroplasty require specific attention to bone resections and soft tissue balancing. This can add technical complexity and time, with some authors reporting an increase of approximately 20 minutes in mean surgery time when managing large deformities with conventional instrumentation [1].

We evaluate the utility of computer-navigation with imageless BoneMorphing® and Apex Robotic Technology, or A.R.T.® for managing large deformities in TKA. BoneMorphing® allows for real-time visualization of virtual bone resection contours, limb alignment and soft-tissue balance during TKA. A.R.T. permits accurate cutting and recutting of the distal femur in 1 mm increments. We asked what effects do severe pre-operative deformities have on post-operative alignment and surgery time in comparison to knees with only mild deformities when using this system.

Methods

This was a retrospective cohort study of 128 consecutive A.R.T. TKA's performed by a single surgeon (mean age: 71 y/o [range 53–93], BMI: 31.1 [20–44.3], 48 males). Patients were stratified into three groups according to their pre-operative coronal plane deformity: Neutral or mild deformity <10° (baseline group); Severe varus ≥10°; and Severe valgus ≥10°; and according to the degree of flexion contracture: Neutral or mild flexion from −5° hyperextension to 10° flexion (baseline group); Hyperextension ≤−5°, and Severe flexion ≥10°. The degree of deformity and final postoperative alignment achieved was measured using computer navigation in all patients and analyzed using multivariate regression. The APEX CR/Ultra Knee System (OMNIlife Science, Inc.) was used in all cases.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 103 - 103
1 Oct 2012
Koenig J Suero E Plaskos C
Full Access

Robotic-guided arthroplasty procedures are becoming increasingly common. We introduced a new computer-navigated TKA system with a robotic cutting-guide into a community-based hospital and characterized the accuracy and efficiency of the technique.

We retrospectively reviewed our first 100 cases following IRB approval. Tourniquet time, intraoperative bone-cut accuracy and final limb alignment as measured by the computer were collected and divided into consecutive quartiles: Groups I, II, III, and IV; 25 cases per group. All resections were planned neutral to the mechanical axis. Postoperative component alignment and overall mechanical axis limb alignment were also measured on standing long-leg radiographs by two independent observers at minimum six weeks follow-up. Radiographic alignment was available for 62 cases.

Intraoperative Computer Data: Bone-cut accuracy was a mean 0.1° valgus, SD±0.8° for both the femur and tibia (range, femur: 2.0° valgus to 1.5° varus; range, tibia: 3.5° valgus to 1.5° varus). Final limb alignment was within 3° for 98% (97/99) of cases (range: 2.0° valgus to 3.5° varus). Radiographic Alignment: Pre-operative mechanical alignment ranged from −14.5° valgus to 21.5° varus. Radiographic femoral and tibial component alignment was within 3° of neutral in 98.4% of cases (61/62). Final limb alignment was within 3° for 87.1% (54/62) of cases (range: 4.5° varus to 4.5° valgus). Learning curve: Mean tourniquet time was 60minutes ±9.9SD (range 46–79) for Group I and 49.5minutes for Groups II, III, and IV (range 35–68), p = 0.0001. Mean tourniquet time for the first ten and second ten procedures was 65±10.6minutes and 55±8.3minutes, respectively, p = 0.034. There were no differences in accuracy among the four groups (p>0.05).

Imageless computer-navigated TKA with a robotic cutting guide allowed one surgeon to make bone resections within 3° of neutral in 98% of cases. Radiographic limb alignment was less precise, which is consistent with the known limitations inherent to this measurement technique. Surgeons can expect this procedure to take 15 additional minutes during the first ten cases and five additional minutes during the second ten cases on average, without compromising accuracy.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 95 - 95
1 Sep 2012
Koenig J Suero E Plaskos C
Full Access

Introduction

Robotic-guided arthroplasty procedures are becoming increasingly common, though to our knowledge there are no published studies on robotic cutting guides in TKA. We introduced a new computer-navigated TKA system with a robotic cutting-guide into a community-based hospital and characterized the accuracy and efficiency of the technique with respect to bone cutting, component alignment and final limb alignment, and tourniquet time.

Methods

The first 100 cases from a single-surgeon were retrospectively reviewed following IRB approval. Intra-operative bone-cut accuracy and overall limb alignment as measured by the computer were collected and divided into consecutive quartiles: Group I, cases 1–25; Group II, cases 26–50; Group III, cases 51–74; Group IV, cases 75–100. All resections were planned neutral to the mechanical axis. Postoperative component alignment and the overall mechanical axis limb alignment in the coronal plane were also measured on standing long-leg AP radiographs by two independent observers at a minimum six weeks post-op. This mechanical radiographic alignment was available for 62 cases. Tourniquet time (the time prior to incision until after cementation) and robotic cutting guide use time were also analyzed.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 411 - 411
1 Nov 2011
Ranawat A Koob T Koenig J Cooper H Foo L Potter H Ranawat C
Full Access

Introduction: Computer-based wear analysis is currently the most accurate method for determining the in vivo wear rates of polyethylene liners during total hip arthroplasty. MRI of a total hip is emerging as the best method for determining the intra-articular volume of particulate debris. The purpose of this study is to determine if there is a correlation between polyethylene wear and the development of particle load in patients with highly crosslinked (HXLP) liners.

Materials and Methods: 20 well-functioning total hips (7 metal heads against HXLP liners and 13 ceramic heads against HXLP liners) in 18 young active individuals were analyzed using the following criteria: femoral head penetration of the liner was measured by Roman (ROntgen Monographic ANalysis) software and particulate load was calculated by MRI criteria as described by Potter et al. Clinical and radiographic analyses were performed using HSS, WOMAC, and criteria defined by DeLee, Charnley, and Engh. The average age of the patients was 57 (Range 45–67) and average follow-up was 1.6 y (range 1.0 – 3.0 y).

Results: All implants appeared well osteointegrated with no radiographic evidence of osteolysis. All patients had well-functioning total hips with a greater than one mile daily walking tolerance. A trend towards correlation was observed between increased polyethylene wear and increased particulate volumes. Average HXLP wear was 0.03 mm (range −0.19 to 0.27 mm) and average particle volume was 841 (range 6951 to 0). One patient in particular recorded 0.27 mm of polyethylene wear, mild particle disease and a particle disease volume of 3321 at 1.6 years follow-up. However, statistical significance could not be achieved with these data points.

Conclusions: There appears to be a relationship between polyethylene wear as measured by computer-based systems and particulate volume as measured by MRI. Limitations of the current methodology include the inability of computer-based systems to detect precise levels of minimal wear with HXLP liners, and the highly sensitive MRI images which may be detecting more than just wear debris.