Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 11 - 11
1 Apr 2018
Kwong L Billi F Keller S Kavanaugh A Luu A Ward J Salinas C Paprosky W
Full Access

Introduction

The objective of this study was to compare the performance of the Explant Acetabular Cup Removal System (Zimmer), which has been the favored system for many surgeons during hip revision surgery, and the new EZout Powered Acetabular Revision System (Stryker).

Methods

54mm Stryker Trident® acetabular shells were inserted into the foam acetabula of 24 composite hemi-pelvises (Sawbones). The hemi-pelvises were mounted on a supporting apparatus enclosing three load cells. Strain gauges were placed on the hemipelvis, on the posterior and the anterior wall, and on the internal ischium in proximity to the acetabular fossa. A thermocouple was fixed onto the polar region of the acetabular component. One experienced orthopaedic surgeon and one resident performed mock revision surgery 6 times each per system.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 98 - 98
1 Dec 2013
Kavanaugh A Schmalzried T Billi F
Full Access

Questions/purposes:

What factors influence tibial tray-cement interface bond strength? We developed a laboratory model to investigate this issue with the goal of providing technical recommendations to mitigate the risk of tibial tray-cement loosening.

Methods:

Forty-eight size 4 Triathlon® tibial trays were cemented into an acrylic holder using two different cements: Simplex® and Palacos®; three different cementing times: early (low viscosity), per manufacturer (normal, medium viscosity), and late (high viscosity); two different cementation techniques: cementing tibial plateau only and cementing tibial plateau and keel; and two different fat (marrow) contamination conditions: metal/cement interface and cement/cement interface. A push-out test was applied at a velocity of 0.05 mm/s, and the load recorded continuously throughout the test at a rate of 10 Hz. The test was stopped when the plate debonded from the cement (i.e. the tray visibly separated from the acrylic support and the load dropped substantially). Statistical analysis was performed using Welch's t-tests and Cohen's d tests.