header advert
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 7, Issue 2 | Pages 139 - 147
1 Feb 2018
Takahara S Lee SY Iwakura T Oe K Fukui T Okumachi E Waki T Arakura M Sakai Y Nishida K Kuroda R Niikura T

Objectives

Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM.

Methods

Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 350 - 350
1 Jul 2014
Lee S Okumachi E Dogaki Y Niikura T Iwakura T Waki T Nishida K Kurosaka M
Full Access

Summary Statement

Low-intensity pulsed ultrasound (LIPUS) enhanced osteogenic differentiation of osteoprogenitor cells derived from mouse induced pluripotent cells (iPSCs) without embryoid body formation. Our findings provide insights on the development of LIPUS as an effective technology for bone regeneration strategies using iPSCs.

Introduction

iPSCs represent a promising cell source for regenerative medicine such as bone regeneration because of their unlimited self-renewal property and ability of differentiation into all somatic cell types. Recently, we developed an efficient protocol for generating a highly homogeneous population of osteoprogenitor cells from embryonic stem cells by using a direct-plating method without EB formation step. It is well-recognised that LIPUS accelerates the fracture healing. There have been several reports showing that LIPUS stimulates the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. To date, effect of LIPUS on iPSCs remains unknown. In this study, we investigated in vitro effect of LIPUS on osteogenic differentiation of osteoprogenitor cells derived from mouse iPS cells via a direct-plating method.