Surgeons treating fractures with many small osteochondral fragments have often expressed the clinical need for an adhesive to join such fragments, as an adjunct to standard implants. If an adhesive would maintain alignment of the articular surfaces and subsequently heal it could result in improved clinical outcomes. However, there are no bone adhesives available for clinical indications and few pre-clinical models to assess safety and efficacy of adhesive biomaterial candidates. A bone adhesive candidate based on water, α-TCP and an amino acid phosphoserine was evaluated in-vivo in a novel murine bone core model (preliminary results presented EORS 2019) in which excised bone cores were glued back in place and harvested @ 0, 3, 7, 14, 28 and 42days. Adhesive pull-out strength was demonstrated 0–28 days, with a dip at 14 days increasing to 11.3N maximum. Histology 0–42 days showed the adhesive progressively remodelling to bone in both cancellous and cortical compartments with no signs of either undesirable inflammation or peripheral ectopic bone formation. These favourable results suggested translation to a large animal model. A porcine dental extraction socket model was subsequently developed where dental implants were affixed only with the adhesive. Biomechanical data was collected @ 1, 14, 28 and 56 days, and histology at 1,14,28 and 56 days. Adhesive strength assessed by implant pull-out force increased out to 28 days and maintained out to 56 days (282N maximum) with failure only occurring at the adhesive bone interface. Histology confirmed the adhesive's biocompatibility and osteoconductive behavior. Additionally, remodelling was demonstrated at the adhesive-bone interface with resorption by osteoclast-like cells and followed by new bone apposition and substitution by bone. Whilst the in-vivo dental implant data is encouraging, a large animal preclinical model is needed (under development) to confirm the adhesive is capable of healing, for example, loaded osteochondral bone fragments.
An The profuse bleeding after bone core removal affected the bond strength and was reflected in the lower mean peak value 1.53N. After considering several options, we were successful in sealing the source of blood flow by pressing adhesive into place after bone core removal. After the initial adhesive had cured additional adhesive was used to secure the bone core in place. The animals were sacrificed after 24 h and a tensile test was undertaken on the bone core to failure. The The development of a double adhesive method of fixing a bone core in the distal femur enabled mean peak tensile forces to be achieved
There are clinical situations in fracture repair, e.g. osteochondral fragments, where current implant hardware is insufficient. The proposition of an adhesive enabling fixation and healing has been considered but no successful candidate has emerged thus far. The many preclinical and few clinical attempts include fibrin glue, mussel adhesive and even “Kryptonite” (US bone void filler). The most promising recent attempts are based on phosphorylating amino acids, part of a common cellular adhesion mechanism linking mussels, caddis fly larvae, and mammals. Rapid high bond strength development in the wetted fatty environment of fractured bone, that is sustained during biological healing, is challenging to prove both safety and efficacy. Additionally, there are no “predicate” preclinical animal and human models which led the authors to develop novel evaluations for an adhesive candidate “OsStictm” based on calcium salts and amino acids. Adhesive formulations were evaluated in both soft (6/12 weeks) and hard tissue (3,7,10,14 & 42 days) safety studies in murine models. The feasibility of a novel adhesiveness test, initially proven in murine cadaver femoral bone, is being assessed in-vivo (3,7,10,14 & 42 days) in bilateral implantations with a standard tissue glue as the control. In parallel an ex-vivo human bone model using freshly harvested human donor bone is under development to underwrite the eventual clinical application of such an adhesive. This is part of a risk mitigation project bridging between laboratory biomaterial characterisation and a commercial biomaterial development where safety and effectiveness have to meet today´s new medical device requirements.
The reported revision rate of total hip arthroplasties (THAs) due to wear and osteolysis is around 10% at 10 years. However, the actual rate is probably higher: the incidence of osteolysis is reported to be 10% to 45%. Apart from design improvements, improved or new materials and/or and combinations are important in reducing particle-induced osteolysis, especially in young and active patients. Wear reduction of up to 40% after inert gas sterilisation of polyethylene (PE) has been demonstrated, both in vitro and in vivo. An effective means of providing further increases in wear resistance is to cross-link PE extensively. Early clinical results of non-melt-annealed PE at three years showed wear reduction of up to 85% compared to inert gas radiation-sterilised PE. In hip joint simulator investigations, bearings with a ceramic ball-head articulating against a composite cup demonstrated wear rates similar to those of ceramic-ceramic bearings. The wear particles are benign. Clinical data collected over two years suggest no disadvantages compared to the standard articulation controls. The wear resistance of alumina-alumina articulation has been enhanced. In-vitro investigation demonstrated that even with a cup inclination of 60° the wear rate is not increased. The effect of micro-separation of the artificial joint is also minimised. Several prospective multi-centre alumina-alumina studies have shown no additional complications with this articulation. However, alumina is a brittle material with an inherent risk of fracture. The addition of 25% zirconia to alumina (ZTA) in the manufacturing process improves its fracture resistance, increasing its strength by more than 50%, while maintaining its other properties. The wear properties of ZTA are even better than that of alumina, especially in micro-separation articulation mode. Highly cross-linked and optimised PE and composite technology are promising concepts in address wear particle-induced osteolysis.