Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 21 - 21
1 Feb 2017
Hua X Wilcox R Fisher J Jones A
Full Access

INTRODUCTION

Mal-positioning of the acetabular component in total hip replacement (THR) could lead to edge loading, accelerated component wear, impingement and dislocation [1,2]. In order to achieve a successful position for the acetabular component, the assessment of the acetabular orientation with reference to different coordinate systems is important [3]. The aims of the present study were to establish a pelvic coordinate system and a global body coordinate system, and to assess the acetabular orientations of natural hips with reference to the two coordinate systems.

METHODS

Three-dimensional (3D) computed tomographic (CT) images of 56 subjects (28 males and 28 females) lying supine were obtained from a public image archive (Cancer Image Archive, website: www.cancerimagingarchive.net). 3D solid models of pelvis and spine were generated from the CT images. Two coordinate systems, pelvic and global body coordinate systems, were established. The pelvic coordinate system was established based on four bony landmarks on the pelvis: the bilateral anterior superior iliac spines (RASIS and LASIS) and the bilateral pubic tubercles (RPT and LPT). The global body coordinate system was generated based on the bony landmarks on the spine: the geometric centers of five lumbar vertebrae bodies and the most dorsal points of five corresponding spinous processes, as well as the anterior sacral promontory (Fig 1a and 1b). The acetabular rim plane was obtained by fitting a set of point along the acetabular rim to a plane using least squares method. The acetabular orientation was defined as the three coordinate components (x-, y- and z- components) of the unit normal vector of the acetabular rim plane in the two coordinate systems (Fig. 1c).