header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 61 - 61
1 Dec 2021
Naghavi SA Hua J Moazen M Taylor S Liu C
Full Access

Abstract

Objectives

Currently, total hip replacement surgery is an effective treatment for osteoarthritis, where the damaged hip joint is replaced with an artificial joint. Stress shielding is a mechanical phenomenon that refers to the reduction of bone density as a result of altered stresses acting on the host bone. Due to solid metallic nature and high stiffness of the current orthopaedic prostheses, surrounding bones undergo too much bone resorption secondary to stress shielding. With the use of 3D printing technology such as selective laser melting (SLM), it is now possible to produce porous graded microstructure hip stems to mimics the surrounding bone tissue properties.

Method

In this study we have compared the physical and mechanical properties of two triply periodic minimal surface (TPMS) lattice structure namely gyroid and diamond TPMS. Based on initial investigations, it was decided to design, and 3D print the gyroid and diamond scaffolds having pore size of 800 and 1100 um respectively. Scaffold of each type of structure were manufactured and were tested mechanically in compression (n=8), tension (n=5) and bending (n=1).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 16 - 16
1 Aug 2012
Meswania J Biring G Wylie C Hua J Muirhead-Allwood S Blunn G
Full Access

Introduction

The National Joint Registry has recently identified failure of large head metal on metal hip replacements. This failure is associated with the high torque at the interface of standard modular taper junction leading to fretting and corrosion. A number of manufacturers produce mini spigots, which in theory, provide a greater range of motion as the neck head junction is reduced. However, the relative torque to interface ratio at this junction is also increased. In this study we investigated hypothesis that the use of small spigots (minispigots) will increase wear and corrosion on modular tapers.

Methods

Wear and corrosion of spigots were compared in-vitro when loaded with a force representative of the resultant force passing through the hip. The heads (female tapers) were made of cobalt-chrome-molybdenum (CoCrMo) and the stems (male tapers) of titanium alloy (Ti). Commercially available tapers and heads were used. The surface parameters & profiles were measured before & after testing. Electrochemical static and dynamic corrosion (pitting) tests were performed on minispigots under loaded and non-loaded conditions.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 27 - 27
1 Aug 2012
Reissis Y Garcia E Hua J Blunn G
Full Access

Impaction allograft using cement is commonly used in revision surgery for filling bone defects and provides a load bearing interface. However, the variable regeneration of new bone within the defect makes clinical results inconsistent. Previous studies showed that addition of mesenchymal stem cells (MSCs) seeded on allograft can enhance bone formation in the defect site. The purpose of this study is to test the hypothesis that heat generated during cement polymerization will not affect viability of the human MSCs.

The temperatures and durations were taken from previous studies that recorded the maximum temperature generated at the bone-cement interface. Temperatures of below 30 degrees Celsius to over 70 degrees Celsius have been detected and the duration of elevated temperature varies from 30 seconds to 5 minutes. In this study the viability of MSCs cultured at different temperatures was assessed. Ten groups were studied with three repeats (Table 1). A control group in which cells were cultures normally was used.

Culture medium was heated to the required temperature and added to the cells for the required duration. The metabolism of MSCs was measured using the alamar Blue assay, cell viability was analysed using Trypan Blue and cell apoptosis and necrosis were tested using Annexin V and Propidium Iodide staining.

Results showed that cell metabolism was not affected with temperatures up to 48 degrees Celsius for periods of 150s, while cells in the 58 degrees Celsius group eventually died (Fig. 1). Similar results were shown in Trypan Blue analysis (Fig. 2). When comparing the group of cells heated to 48 degrees Celsius for 150s with the control group for apoptosis and necrosis, no significant difference was observed.

The study suggests that human MSCs seeded to allograft can be exposed to temperatures up to 48 degrees Celsius for 150s, which covers many of the situations when cement is used. This indicates that the addition of mesenchymal stem cells to cemented impaction grafting can be carried out without detrimental effects on the cells and that this may increase osteointegration.