Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Introduction: The aim of this study was to investigate if steroids enhance the vasoconstrictive effect of endothe-lin-1 (ET-1) on femoral arteries.
Materials and Methods: Ten female Wistar rats 59 to 88 days of age and 238 to 310 g of body weight, were used. Forty femoral artery segments were harvested. These arterial segments were mounted as ring preparations on a small vessel myograph. Two vessels from each animal were randomized to incubation with methylprednisolone 5 μg/ml [1] while the other 2 vessels were incubated with placebo. The arteries were stimulated cumulatively with endothelin-1. Isometric wall tension was quantified by the EC50; the vasoconstrictor concentration resulting in half maximal contraction.
Results: Thirty-eight arteries could be harvested in total; 20 were randomized to steroid treatment while 18 served as controls. The endothelin-1 dose-response curve displayed a stronger contraction for the steroid group in relation to the controls with increasing doses of ET-1. The EC50 of 4.4*10−8 M ± 1.8*10−8 M for the steroid vessels was lower compared to 5.9*10−8 M ± 3.4*10−8 M for the controls (mean ±SD; n.s.).
Discussion: Endothelin-1 is a potent vasoconstrictor. This study showed that incubation with methylprednisolone enhanced ET-1 mediated contraction of femoral arteries which can diminish blood flow within the vascular bed supplying the femoral head. This may be a relevant cofactor in the early pathogenesis of steroid-associated femoral head necrosis.
Introduction: The aim of this study was to investigate if steroids enhance the vasoconstrictive effect of nor-adrenaline on femoral arteries, which may result in femoral head blood flow reduction.
Materials and Methods: Ten male Wistar rats 62 to 88 days of age, 254 to 318 g of body weight, were used. Twenty femoral artery segments were harvested. These arterial segments were mounted as ring preparations on a small vessel myograph for isometric force measurements. The arteries were stimulated cumulatively with noradrenaline before and after incubation with methylprednisolone (5 μg/ml). Isometric wall tension was plotted and quantified by the EC50, the vasoconstrictor concentration resulting in halfmaximal contraction.
Results: The noradrenaline dose-response curve displayed a shift to the left for the steroid group in relation to the controls. This was reflected by a significantly lower EC50 of 9.5*10−7 M ± 5.1*10−7 M for the steroid vessels compared to 2.5*10−6 M ± 1.1*10−6 M for the control vessels (mean ± SD; p<
0.005).
Discussion: This study showed that incubation with methylprednisolone enhanced noradrenaline-mediated contraction of femoral arteries. Enhanced contraction of femoral arteries can diminish blood flow within the vascular bed supplying the femoral head. This may be a relevant cofactor in the early pathogenesis of steroid-associated femoral head necrosis.