These findings can explain why injury involving the P.S.L.C. in the adult has a worse prognosis for rehabilitation.
In our study we used the proximal chevon osteotomy combined with Distal Soft Tissue Release and approximation of the 1st and 2nd metatarsus using a string to further decrease the intermetatarsal angle. From January 2000 to June 2005 the basal chevon osteotomy was selected in 44 patients (37 female and seven male patients, ages 14 to 80, mean: 54.97 years) total of 49 feet with moderate metatarsus primus varus (IMA 13 to 20 degrees) and hallux valgus deformities (less than 50 degrees). The AOFAS Hallux Metatarsopha-langeal-Interphalangeal Scale and patient satisfaction were monitored prior to surgery, and postoperatively. Changes in the IMA and HV angle were measured in the conventional method and documented. All patients were treated in a Darco Post operative splint.
The stem displayed an excellent distal fixation, clinically and radiologically. Much less complications were noted, compared to earlier series. Three patients had postoperative infections – one case was after a 2 stage revision of an infected implant, one case was associated with a large hematoma due to excessive anticoagulation and another case was a superficial infection that resolved. Other complications included 2 (11%) early dislocations and one femoral nerve palsy. There were no intraoperative fractures of perforations and none of these complications necessitated implant removal.
Osteoarthritis (OA) is associated with biochemical and mechanical processes that release different wear particles into the synovial fluid. Unfortunately, symptoms such as pain, swelling and limited range of motion often do not correlate with the level of OA as observed by X-ray. In addition, the mechanisms of OA and the processes involved are still not clearly understood. Therefore, there is much interest in developing new diagnostic techniques that would provide means to both sensitive, objective determination of joint damage and studying the underlying mechanisms. Such a technique may also aid in evaluating the efficiency of drugs under development objectively and relatively quickly. Bio-ferrography (BF) is a method for magnetic isolation of target cells or particles in a fluid. The current project was aimed at evaluating the applicability of BF for isolation and analysis of specific wear particles in human joints. Synovial fluid aspirates were drawn during either arthroscopy or total joint replacement from 14 patients with either OA or other types of chondropathy. Target components of bone and cartilage (collagen type I and type II, respectively) were labeled with monoclonal antibodies coupled to magnetic beads. The captured particles were isolated on microscope slides by means of BF and characterized by several optical and scanning electron microscopy techniques combined with chemical analysis. The number, size and shape of particles were quantified by image analysis. Results showed that specific labeling of target collagens enables capture of a much higher number of particles in comparison to previous reports. A variety of particles with different morphologies and sizes were documented. The number of captured particles changed in different patients. In addition to bone and cartilage fragments, particles of repaired cartilage that contained collagen I, meniscus particles containing collagens I and II, and magnesium-rich particles that could form during biochemical dissolution of hydroxyapatite or precipitation from body fluids, were identified. Further in-depth characterization of these particles would shade more light on the mechanisms and processes involved in joint degradation. The evaluation of joint damage by BF was found to correlate with clinical observations. It was concluded that BF has the potential of becoming a powerful tool in the study of human joint diseases. Future studies may use even more specific labeling of joint components. BF may become a routine diagnostic technique, aiding the orthopedist in determination of OA level in an objective manner. The ability to draw samples quickly during arthroscopy with little discomfort to the patient could facilitate routine serial assessment of particular joints.
Bio-ferrography (BF) is a method for magnetic isolation of particles suspended in liquid on a glass slide. The objective of the current research was to evaluate the potential use of BF in determining the wear level of artificial hip and knee joints based on analysis of aspirated synovial fluids. Synovial fluid aspirates and prosthesis compartments removed by revision surgery from 14 patients were analyzed. The synovial fluid was centrifuged to separate the wear particles from the hyaluronic acid. The failed prostheses were washed in the lab with either saline or distilled water to remove and capture unbound wear particles. An erbium chloride (ErCl3) solution was added in some cases to induce increased magnetization. The wear particles were isolated by means of a Bio-Ferrograph 2100 system, and characterized by means of several optical and scanning electron microscopy techniques as well as energy dispersive spectroscopy. The number and size of particles were quantified by image analysis. The failed prostheses were also characterized in order to determine whether BF can monitor the wear of artificial joints. Results showed that metallic (namely, Ti-, Co- and Fe-based alloys), polymeric (namely, UHMWPE, POM and PMMA) and bone particles could be isolated on slides by BF. The isolated particles exhibited a variety of shapes and surface morphologies that were dependent on the process by which they had been formed. No other technique allows retrieval and isolation of so many tiny particles, either metallic or non-metallic, while preserving their shape for microscopic examination and chemical analysis. A correlation existed between the level of prosthesis degradation, as inspected during failure analysis, and the number and size of isolated particles; namely, an increase in number and size of particles represented increased prosthesis wear. When the prosthesis was visually in good condition, very few small particles were retrieved from the synovial fluid. The formation of metal and bone particles in several cases accelerated further wear of these prostheses. On the basis of the good correlation between the classification of damage by BF and the level of artificial joint degradation as evaluated during failure analysis, it was concluded that BF of synovial fluids may be used in the study of artificial joints failure. In addition to monitoring the level of wear, it allows determination of the mechanism and cause of failure, thus providing feedback on problems associated with design, manufacturing and installation of artificial joints. The ability to draw samples quickly during joint aspiration with little discomfort to the patient could facilitate periodic ferrographic evaluation of specific joints. Such information may also prove invaluable in the design of improved prostheses. In these cases, the atlas of wear particles that was constructed in this project for the first time may be used as a reference.
Approximately 700 TKRs (Total Knee Arthroplasty) were performed in our department from 1992–2000. In 13 cases, patellar dislocation occurred post-operation - 12 with no trauma and one following a fall and trauma to the medial aspect of the knee. Dislocation occurred from 2 months following the operation until 1 year postoperative (average 4.5 months). None of the patients had malalignment of the components. The average femorotibial angle was 5° (range 8° valgus to 3° varus). No patient had preoperative valgus deformity. Postoperative range of motion was 105° (range 90–125°). All dislocations were treated by operative lateral relapse and medial capsular implication followed by 6 weeks of immobilization with a brace in full extension and then physiotherapy, range of motion, patellar taping and Vastus medialis strengthening. The patella stabilized in 11 cases following the operation. In 2 cases, dislocation recurred following the operation and they were operated on again where medialization of the tibial tubercle was performed. Both cases stabilized following the second operation. One case developed a stress fracture of the tibia at the end of the tubercle osteotomy which healed conservatively. All dislocations occurred in the IBII prosthesis. During the past 3 years since using the PFC Sigma and Legacy prosthesis, we have had no dislocations of the patella, probably for the following reasons:
Use of the mid vastus exposure. Geometry of the prosthesis. In only 10% of the replacements, patellar resurfacing was performed.
Forty-two revision knee replacements were performed in our department between 1992–2000. We report our experience in 18 cases of stiff knees with a range of motion from −5° – 75° (average 50°) where an oblique incision through the quadriceps tendon combined with medial capsular incision (the “wandering resident” incision) was used for exposure. This exposure allowed us to expose the stiff knee with no hazard of avulsion of the patellar tendon and with easy removal of the old prosthesis and implantation of the new one. In 5 of these cases, this exposure was used twice in two stage revisions of a septic prosthesis. Post-operative rehabilitation was slower, a knee brace was used in extension for 6 weeks and daily physiotherapy and CPM from 0°–70° only. Full range of motion was started after 6 weeks. Follow-up in 1–8 years (average 3.5 years). All patients had good clinical results with range of motion from 0°–110° (average 86°). One patient had a lag of 10° in active extension. The knee score of the American Knee Society ranged from 35–52 (average 40) and improved to 72–89 (average 84). In 3 cases, we used a non-constrained prosthesis (PCL) sacrificing condylar prosthesis), in 11 cases a constrained prosthesis (CCK type) and in 4 cases a rotating hinge prosthesis.