Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.Aims
Methods
Routinely in TKA, at least one of the cruciate ligaments are sacrificed. The cruciate ligaments excision may have an impact in the stability of the reconstructed knee by virtue of the impact on the gap kinematics. In this study, a selective cutting protocol was designed to quantify the individual contribution of ACL and PCL about the knee by means of a loaded cadaveric model. Five fresh frozen normal cadaver specimens were used. The femur was fixed to a specially designed machine, and 3D tibial movements relative to the femur and joint gap distances were measured by means of a navigation system from full extension to 140° flexion. The joint was distracted with 10 pounds. The measurement was performed before and after ACL and PCL excision. Medial gap distance at 90° flexion before and after cruciate ligaments excision was 4.3 ± 2.7 mm (mean ± SD) and 5.1 ± 2.8 mm (p<
0.05) respectively. Cruciate ligaments excision significantly widened the medial and lateral gaps at many flexion angles, and the effect of excision on the gap distance was different between medial and lateral sides especially at 90° knee flexion. Cruciate ligaments excision also significantly influenced knee kinematics. If this varying gap is not accounted for either through implant shape and orientation or through soft tissue adjustments, instability could be the result. Surgeons should be made aware of the influence of cruciate excision on varus/valgus laxity throughout the range of motion. Design modification of the femoral component may also be necessary in order to obtain optimal stability in deep flexion.
Posterior stabilized (PS) type knee prosthesis characterized by Post-Cam structure as stabilizer has successfully been used in TKA worldwide, while failure and fracture problems of tibial insert made from polymeric material (UHMNWPE) are still important issues from clinical and mechanical points of view. It is therefore needed to understand the mechanical conditions of the tibial insert under different kinds of TKA motions. The aim of this study is to characterize the mechanical condition of tibial insert under contact between femoral component and tibia insert during flexional motion using dynamic 3-D finite element (FE) method. 3-D FE models of two different kinds of PS type prostheses clinically used were developed and stress analyses were performed from full extension to 135 degree knee flexion. Effects of the different Post-Cam structures on the stress states were investigated, and a guideline towards risk assessment of PS type prosthesis was discussed. Three-D FE models of Stryker’s PS type knee prostheses, Scorpio Superflex and NRG, were developed base on their CAD data. The tibial post of Scorpio Superflex type knee prosthesis shapes angular, while NRG shapes round. Four nodes tetrahedral elements were used to construct the FE models. Nonlinear spring models were attached to the front and back of the tibial component to express the effect of soft tissues on the movement of real TKA knees. Vertical load and horizontal load were applied to the femoral and tibial components, respectively, to express a deep knee bending (squatting) motion. Flexion motion was introduced by rotation the femoral component from full extension to 135 degree. Internal rotation of 5, 10, 15 degrees were also introduced by rotating the tibial component simultaneously with the flexional motion. Maximum Mises equivalent stress during knee flexion with 5, 10 and 15 degrees internal rotation of the tibial component of Superflex were much higher than that of NRG, especially at the flexion angle of 120 degree. NRG exhibited stress concentrations on both the Post and condylar surfaces and stress levels were much lower that that of Superflex. The maximum stress in NRG was found to be reduced to about half of Superflex. Mises equivalent stress distribution also showed that flexion with internal rotation generated higher stress concentrations on the condylar surfaces of both prostheses. The analytical results well demonstrated that the design modification of the tibial insert of NRG effectively reduced the stress concentration with rotated tibial component. The lower stress level in NRG corresponds to the lower reaction force and hence lower resistance to flexional motion than Superflex. This implies that the round post is more suitable for deep flexion than the angular post.
Mechanical loading is important for the maintenance of the skeleton. In this study we addressed the following question. What is the influence of long-term exposure to 2.5 g on bone architecture in male rats? We expect that bone density will increase. For the experiments we used a total of 14 Long Evans rats. Two experiments were performed in which the rats were exposed to 2.5 g for a period between 33 and 44 weeks. In the first experiment we analyzed the 3D trabecular structure in the femoral head, and in the second one the structure in the proximal tibia (metaphysis) was analyzed using micro-computer-tomography. Rats exposed to 2.5 g had between 6% and 29% less total body weight than controls. Changes in anisotropy, which is a measure for trabecular alignment, were negligible. In the femoral head, the bone volume fraction (BV/TV) was similar for rats exposed to 2.5 g and controls. The diameters of the femoral head and neck in rats exposed to hypergravity were smaller than in controls, but not significantly. In the tibia, the BV/TV was lower for rats exposed to 2.5 g than for control rats (p<
0.05), whereas the size of the tibial plateau was larger in the exposed rats (p<
0.05). These preliminary results were in contrast to our expectation. When exposed to 2.5 g, the trabecular architecture in the femoral head hardly changed, and in the tibia the BV/TV decreased. The tibial plateau was however larger. Adaptation to hypergravity conditions might be more at the global, cortical level than at the trabecular level. Alternatively, it is possible that the activity of rats exposed to hypergravity was less compared to controls. This would result in decreased dynamic stimulation of the bone so that the BV/TV still may satisfy the mechanical demands of rats exposed to hyper-gravity.