Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 26 - 26
1 May 2016
Hanzlik J Day J Kurtz S Verdonschot N Janssen D
Full Access

Introduction

Initial large-scale clinical studies of porous tantalum implants have been generally promising with well-fixed implants and few cases of loosening [1–3]. An initial retrieval study suggests increased bone ingrowth in a modular tibial tray design compared to the monoblock design [4]. Since micromotion at the bone-implant interface is known to influence bone ingrowth [5], the goal of this study was to determine the effect of implant design, bone quality and activity type on micromotion at the bone-implant interface, through FE modeling.

Patients & Methods

Our case-specific FE model of bone was created from CT data (68 year-old female, right tibia, Fig-1). Isotropic properties of cortical and trabecular bone were derived from the calibrated CT data. Modular and monoblock porous tantalum tibial implants were virtually placed in the tibia following surgical guidelines. All models parts were 3D meshed with 4-noded tetrahedral elements (MSC.MARC-Mentat 2013, MSC Software Corporation, USA). Frictional contact was applied to the bone-tantalum interface (µ=0.88) and UHWMPE-Femoral condyle interface (µ=0.05) with all other interfaces bonded. Loading was applied to simulate walking, standing up and descending stairs. For each activity, a full load cycle [6] was applied to the femoral condyles in incremental steps. The direction and magnitude of micromotions were calculated by tracking the motions of nodes of the bone, projected onto the tibial tray. Micromotions were calculated parallel to the implant surface (shear), and perpendicularly (tensile). We report the maximum (resultant) micromotion that occurred during a cycle of each activity. The bone properties were varied to represent a range in BMD (−30%BMD, Norm, +30%BMD). We compared design type, bone quality and activity type considering micromotion below 40 µm to be favorable for bone ingrowth [5].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2016
Hanzlik J Day J Levine HB Klein GR Hartzband M Parvizi J Kraay M Rimnac C Kurtz S
Full Access

Introduction

A variety of porous coatings and substrates have been used to obtain fixation at the bone-implant interface. Clinical studies of porous tantalum, have shown radiographically well-fixed implants with limited cases of loosening. However, there has been limited retrieval analysis of porous tantalum hip implants. The purpose of this study was to investigate factors affecting bone ingrowth into porous tantalum hip implants.

Methods

126 porous tantalum acetabular shells and 7 femoral stems, were collected under an IRB-approved multicenter retrieval program. Acetabular shells that were grossly loose, cemented or complex revisions were excluded. Shells with visible bone on the surface were chosen. 20 acetabular shells (10 primary) and all femoral stems were dehydrated, embedded, sectioned, polished and bSEM imaged (Figure-1). Main shell revision reasons were infection (n=10,50%), femoral loosening (n=3,15%) and instability (n=3,15%). Analyzed implants were implanted for 2.3±1.7 years (shells) and 0.3±0.3 years (stems). Eight slices per shell and 5–7 slices per stem were analyzed. The analysis included bone area/pore area (BA/PA), BA/PA zonal depth analysis, extent of ingrowth and maximum depth of bone ingrowth. BA/PA zone depths were: Zone-1 (0–500um), Zone-2 (500–1000um) and Zone-3 (1000um-full depth). Nonparametric statistical tests investigated differences in bone measurements by location within an implant and implant type (Friedman's Variance and Kruskal-Wallis). Post-hoc Dunn tests were completed for subsequent pairwise comparisons. Spearman's rank correlation identified correlations between bone measurements and patient related variables (implantation time, age, height, weight, UCLA Activity Score). Statistical analyses were performed using PASW Statistics package.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 132 - 132
1 Jan 2016
MacDonald D Kurtz SM Kocagoz S Hanzlik J Underwood RJ Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Day J Rimnac C
Full Access

Introduction

Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA?

Methods

100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 110 - 110
1 Dec 2013
MacDonald D Kurtz S Kocagoz S Hanzlik J Underwood R Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Rimnac C
Full Access

Background:

Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Less is known about head-neck taper corrosion with ceramic femoral heads.

Questions/purposes:

We asked (1) whether ceramic heads resulted in less taper corrosion than CoCr heads; (2) what device and patient factors influence taper fretting corrosion; and (3) whether the mechanism of taper fretting corrosion in ceramic heads differs from that in CoCr heads.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 108 - 108
1 Mar 2013
Higgs G Kurtz S Hanzlik J MacDonald D Kane WM Day J Klein GR Parvizi J Mont M Kraay M Martell J Gilbert J Rimnac C
Full Access

Introduction

Wear debris generation in metal-on-metal (MOM) total hip arthroplasty (THA) has emerged as a compelling issue. In the UK, clinically significant fretting corrosion was reported at head-taper junctions of MOM hip prostheses from a single manufacturer (Langton 2011). This study characterizes the prevalence of fretting and corrosion at various modular interfaces in retrieved MOM THA systems used in the United States.

Methods and Materials

106 MOM bearing systems were collected between 2003 and 2012 in an NIH-supported, multi-institutional retrieval program. From this collection, 88 modular MOM THA devices were identified, yielding 76 heads and 31 stems (22 modular necks) of 7 different bearing designs (5 manufacturers) for analysis. 10 modular CoCr acetabular liners and 5 corresponding acetabular shells were also examined. Mean age at implantation was 58 years (range, 30–85 years) and implantation time averaged 2.2 ± 1.8 years (range, 0–11.0 years). The predominant revision reason was loosening (n=52). Explants were cleaned and scored at the head taper, stem taper, proximal and distal neck tapers (for modular necks), liner, and shell interfaces in accordance with the semi-quantitative method of Goldberg et al. (2002).