Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 38 - 38
1 Apr 2017
Ray S El Khassawna T Thormann U Sommer U Rhonke M Henns A Gelinsky M Hanke T Schnettler R Heiss C Alt V
Full Access

Objectives

Osteoporosis and osteomalacia lead to increased fracture risk. Previous studies documented dysregulated osteoblast and osteoclast activity, leading to a high-turnover phenotype, reduced bone mass and low bone mineral content. Osteocytes, the most abundant bone cell type, are involved in bone metabolism by enabling cell to cell interaction. Osteocytes presence and viability are crucial for bone tissue homeostasis and mechanical integrity. Osseo-integration and implant degradation are the main problems in developing biomaterials for systemically diseased bone. This study examines osteocyte localisation, morphology and on the implant surface and at the implant bone interface. Furthermore, the study investigates ECM proteins regulation correlated to osteocytes and mechanical competence in an ovariectomised rat model with a critical size metaphyseal defect.

Methodology

After induction of osteoporosis, 60 female Sprague-Dawley rats were randomised into five groups: SrCPC (n=15), CPC (n=15), ScB30 (n=15), ScB30Sr20 (n=15) and empty defect (n=15). The left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with the above mentioned implants or left empty. After six weeks, histomorphometric analysis showed a statistically significant increase in bone formation at the tissue-implant interface in the SrCPC group compared to the other groups (p<0.01). Osteocyte morphology and networks were detected using silver and staining. ECM proteins were investigated through immunohistochemistry. Cellular populations were tested using enzyme histochemistry. Mineralisation was assessed using time of flight secondary ion mass spectrometry (TOF-SIMS). Statistical analysis was performed using Mann Whitney U test with Bonferroni correction.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 36 - 36
1 Apr 2017
Ray S Thormann U Sommer U ElKhassawna T Rhonke M Henns A Gelinsky M Hanke T Schnettler R Heiss C Alt V
Full Access

Background

Multiple Myeloma is a hematological malignancy of terminally differentiated plasma cells associated with increased osteoclast activity and decreased osteoblast functions. Systemic antiproliferative treatment includes proteasome inhibitors such as bortezomib, a clinical potent antimyeloma agent. Local delivery of biological active molecules via biomaterial composite implants to the site of the lesion has been shown to be beneficial for bone and implant-associated infections. In anticancer treatment local delivery of anticancer agents to the neoplasia via biomaterial carriers has never been reported before. The purpose of the current is to present the concepts and the first in vivo results for proteasome inhibitor composite biomaterials for local delivery of bortezomib to proliferative multiple myeloma bone lesions including concentration measurements at different anatomical regions in a rat model.

Methods

80 female Sprague-Dawley rats were randomised into five different treatment groups (n=16/group): 1) Empty (2) Xerogel-granulat: XG (3) Xerogel-granulat+100mgbortezomib [b]: XG100b (4) Xerogel-granulat+500mgb:XG500b (5) Xerogel-granulat+2500mgb:XG2500b. A 2.5 mm drill hole was then created in the metaphysis of the left femur. The defect was then either filled with the previously mentioned substitutes or left empty to serve as a control. After 4 weeks femora were harvested followed by histological, histomorphometrical and immunohistochemical (BMP2; bone-morphogenic protein 2, OPG; osteoprotegerin, RANKL; Receptor activator of nuclear factor kappa-B ligand, ASMA; alpha smooth muscle actin, ED1;CD68 antibody). TOF-SIMS was used to assess the distribution of released strontium ions. Statistical analysis was done using SPSS software. Data was not found normally distributed and hence Mann-Whitney U with bonferroni correction was used. To avoid type I errors due to unequal variances and group sizes Games-Howell test was also performed.