Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 107 colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling.Aims
Methods
Bovine cartilage explants were cultured with isogenic Objectives
Methods
The purpose of this study was to create a novel The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively.Objectives
Methods
During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively.Objectives
Methods
Articular cartilage is attached to subchondral bone but it is not clear whether the tissues interact and influence in situ (within the matrix) chondrocyte survival. The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Articular cartilage explants harvested from the meta-carpophalangeal joints (N=6) of three-year old cows were placed into three groups:
subchondral bone excised from articular cartilage (Group A) subchondral bone left attached to articular cartilage (Group B) subchondral bone excised, but co-cultured with articular cartilage (Group C). Explants were cultured in serum-free media over 7 days. Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs. 7 days) for Groups A, B and C. With excision of subchondral bone from articular cartilage (Group A), there was a marked increase in chondrocyte death over 7 days primarily within the superficial zone (p<
0.05). There was no significant increase in chondrocyte death within the superficial zone over the same time period for Groups B and C (p>
0.05). There was no significant difference in cartilage thickness or cell density between Groups A, B and C (p>
0.05). Corresponding increases in the protein content of the culture media for Groups B and C but not for Group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. Subchondral bone significantly influences chondrocyte survival in articular cartilage in vitro. These data support the concept of a functional bone-cartilage system in vivo.