Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 11 - 11
1 Oct 2019
Held MB Grosso MJ Gazgalis A Sarpong NO Jennings E Shah RP Cooper HJ Geller JA
Full Access

Introduction

Robotic-assisted total knee arthroplasty (TKA) was introduced to improve limb alignment, component positioning, and soft-tissue balance, yet the effect of adoption of this technology has not been established. This study was designed to evaluate whether robotic-assisted TKA leads to improved patient reported outcome measures (PROMs) and patient satisfaction as compared to conventional TKA at 3 and 12 months.

Methods

This IRB-approved single-surgeon retrospective cohort analysis of prospectively collected data compared 113 conventional TKA patients with 145 imageless robotic-assisted TKA patients (Navio™ Surgical System, Smith&Nephew®, Memphis TN). Basic demographic information, intraoperative and postoperative data, and PROMs (SF-P, SF-M, WOMAC pain, WOMAC stiffness, WOMAC Physical Function, KSS) were collected and recorded preoperatively, at 3 months, and at 12 months following surgery. Range of motion (ROM), blood loss, surgical duration, and complication rates between groups were also collected. Continuous measures such as mean difference in PROMs and ROM were compared using unpaired t-tests. Categorical measures such as the percentage of patients with complications were compared using chi-square analysis.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 16 - 16
1 Apr 2013
Grosso MJ Courtland HW Yang X Sutherland J Fahlgren A Ross PF van der Meulen MMC Bostrom MP
Full Access

Improving periprosthetic bone is essential for implant fixation and reducing peri-implant fracture risk. This studied examined the individual and combined effects of iPTH and mechanical loading at the cellular, molecular, and tissue level for periprosthetic cancellous bone. Adult rabbits had a porous titanium implant inserted bilaterally on the cancellous bone beneath a mechanical loading device on the distal lateral femur. The right femur was loaded daily, the left femur received a sham loading device, and half of the rabbits received daily PTH. Periprosthetic bone was processed up to 28 days for qPCR, histology, and uCT analysis. We observed an increase in cellular and molecular markers of osteoblast activity and decrease in adipocytic markers for both treatments, with small additional effects in the combined group. Loading and iPTH led to a decrease and increase, respectively, in osteoclast number, acting through changes in RANKL/OPG expression. Changes in SOST and beta-catenin mRNA levels suggested an integral role for the Wnt pathway. We observed strong singular effects on BV/TV of both loading (1.53 fold) and iPTH (1.54 fold). Combined treatment showed a small additive effect on bone volume. In conclusion, loading and iPTH act through a pro-osteoblastic/anti-adipocytic response and through control of bone turnover via changes in the RANKL/OPG pathway. These changes led to a small additional, but not synergistic, increase in bone volume with the combined therapy.