Hip Osteoarthritis (HOA) is the most common joint disorder and a major cause of disability in the adult population, leading to total hip replacement (THR). Recently, evidence has mounted for a prominent etiologic role of femoroacetabular impingement (FAI) in the development of early OA in the non-dysplastic hip. FAI is a pathological mechanical process, caused by abnormalities of the acetabulum and/or femur leading to damage the soft tissue structures. FAI can determine chondro-labral damage and groin pain in young adults and can accelerate HOA progression in middle-aged adults. The aim of the study was to determine if the presence of calcium crystal in synovial fluid (SF) at the time of FAI surgery affects the clinical outcomes to be used as diagnostic and predictive biomarker. 49 patients with FAI undergoing arthroscopy were enrolled after providing informed consent; 37 SFs were collected by arthrocentesis at the time of surgery and 35 analyzed (66% males), median age 35 years with standard deviation (SD) 9.7 and body mass index (BMI) 23.4 kg/m2; e SD 3. At the time of surgery, chondral pathology using the Outerbridge score, labral pathology and macroscopic synovial pathology based on direct arthroscopic visualization were evaluated. Physical examination and clinical assessment using the Hip disability & Osteoarthritis Outcome Score (HOOS) were performed at the time of surgery and at 6 months of follow up. As positive controls of OA signs, SF samples were also collected from cohort of 15 patients with HOA undergoing THR and 12 were analysed. 45% FAI patients showed CAM deformity; 88% presented labral lesion or instability and 68% radiographic labral calcification. 4 patients out of 35 showed moderate radiographic signs of OA (Kellegren-Lawrence score = 3). Pre-operative HOOS median value was 61.3% (68.10-40.03) with interquartile range (IQR) of 75-25% and post-operative HOOS median value 90% with IQR 93.8-80.60. In both FAI and OA patients the calcium crystal level in SFs negatively correlated with glycosaminoglycan (component of the extracellular matrix) released, which is a marker of cartilage damage (Spearman rho=-0.601, p<0.001). In FAI patients a worst articular function after surgery, measured with the HOOS questionnaire, was associated with both acetabular and femoral chondropathy and degenerative labral lesion. Moreover, radiographic labral calcification was also significantly associated with pain, worst articular function and labral lesion. Calcium crystal level in SFs was associated with labral lesions and OA signs. We concluded that the levels of calcium crystals in FAI patients are correlated with joint damage, OA signs and worst post-operative outcome. The presence of calcium crystals in SF of FAI patients might be a potential new biomarker that might help clinicians to make an early diagnosis, evaluate disease progression and monitor treatment response.
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.Objectives
Methods
Osteoarthritis (OA), the most common chronic degenerative joint disease, is characterized by inflammation, degradation of the articular cartilage and subchondral bone lesions, causing pain and decreased functionality. NF-κB pathway is involved in OA and, in most cases, its activation depends on the phosphorylation and degradation of IκBα, the NF-κB endogenous inhibitor that sequesters NF-κB in the cytosol. Under inflammatory stimuli, IκBα is degraded by the IKK signalosome and NF-κB moves into the nucleus, inducing the transcription of inflammatory mediator genes and catabolic enzymes. The IKK signalosome includes IKKβ and IKKα kinases, the latter shown to be pivotal in the OA extracellular matrix derangement. The current OA therapies are not curative and nowadays, the preclinical research is evaluating new structure-modifying pharmacological treatments, able to prevent or delay cartilage degradation. N-acetyl phenylalanine derivative (NAPA), is a derivative of glucosamine, a constituent of the glycosaminoglycans of cartilage and a chondroprotective agent. Previous The present study aims to further clarify the effect of NAPA in counteracting OA progression, in an Mice were divided into 3 groups:
DMM group: DMM surgery without NAPA; DMM+NAPA group: DMM surgery with NAPA treatment; NO DMM group: no DMM surgery. DMM surgery was performed in the right knee, according to Glasson SS [2], while the left knee did not undergo any surgery. Four weeks after surgery (mild-to-moderate OA), some animals received one intra-articular injection of NAPA (2.5 mM) and after 2 weeks, the animals were pharmacologically euthanized. The mice of the 1st group were euthanized 4 weeks after DMM and those of the 3rd group after 6 weeks from their arrival in the animal facility. At the end of experimental times, both knee joints of the animals were analyzed through histology, histomorphometry, immunohistochemistry and subchondral bone microhardness. The injection of NAPA significantly improved cartilage structure, increased cartilage thickness ( This study demonstrated the chondroprotective activities exerted by NAPA
In clinical orthopedics suitable materials that induce and restore biological functions together with the right mechanical properties are particularly needed for the regeneration of musculoskeletal tissue. An innovative solution to answer this need is represented by tissue engineering. This technique could overcome the limits of traditional approaches involving the use of homologous, autologous or allogenetic tissue (e.g. tissue availability, immune rejection and pathogen transfer). In this field, rapid prototyping techniques are emerging as the most promising tool to realize three-dimensional tissue constructs with highly complex geometries. Based on CAD/CAM technology, rapid prototyping allows development of patient-specific 3D scaffolds from digital data obtained with latest generation imaging tools. These structures can be realized in different materials, tailoring their mechanical properties and architectural features. Most rapid prototyping techniques allow the creation of acellular 3D scaffolds, which must be subsequently seeded with cells. Conversely, 3D bioprinting can deposit bio-ink containing molecules/cells, providing desired spatial distribution of growth factors/cells within the scaffold. The need of printable materials suitable for processing with inkjet, dispensing, or laser-print technologies, forces the use of matrices within a specific range of viscosity. However, these materials have low mechanical features. To overcome this problem and to obtain a final construct with good mechanical properties, bioprinting tissue fabrication can rely on the alternate deposition of thermoplastic materials and cell-laden hydrogels. Since mechanical performance is determined not only by the material properties but also by the geometry (microarchitecture) of the structure, printing parameters can be modified to obtain the desired features. The new 3D platform available at Rizzoli Orthopaedic Institute, consisting of a Computer Tomography (GE Medical Systems, Milano, Italia) and a 3D Bio-Printer (RegenHU, Villaz-St-Pierre, Switzerland) is used to address the above-mentioned issues. Preliminary results showed that it is possible to modify the microarchitecture of the printed structures adjusting their apparent density and stiffness in the range of the trabecular bone tissue. Additionally, it has been proven that the calcium phosphate based paste, used as bioink, allows cell attachment and proliferation. Therefore, the platform allows to print scaffolds with open and interconnected porosities and suitable mechanical properties. They can be filled with different components such as cells or soluble growth factors at specific locations.
Fresh bipolar shell osteochondral allograft (FBOA) is a controversial treatment option for post-traumatic ankle arthritis. Immunological response to transplanted cartilage may play a role in failure. Aim of the study is to compare two groups of patients who received FBOA in association or not to immunosuppressive therapy. 2 groups, of 20 patients each, underwent FBOA. Only one group (group-B) received immunosuppressive therapy. Pre-operative and follow-up evaluation were clinical (AOFAS) and radiographical (X-Rays, CT- scan, MRI). Bioptic samples harvested during II look were examined by histochemical, immunohistochemical (ICRS II score) and by genetic typing analyses.INTRODUCTION
METHODS
The purpose of this study is to demonstrate the validity of the autologous chondrocytes transplantation (A.C.T.) technique implemented over the last 6 years in the treatment of osteochondral lesions of the talus. Our case study included 22 patients (12 males and 10 females), with an average age of 27 years affected by osteochondral lesions of the talus surface. All lesions were >
1.5 cm2, monofocal, and post-traumatic in origin. The first 9 patients received ACT (Genzyme technique) and the remaining 13 patients received ACT with an arthroscopic technique. In 6 of the patients, the cartilage harvested from the detached osteochondral fragment was used for culturing, avoiding the first step arthroscopy in the knee. Before surgery, all patients were assessed clinically, radiographically, and using MRIs. For clinical evaluation patients were assessed using the American Foot &
Ankle Society 100 point score. Before surgery the mean score was 48.4 points. 11 patients underwent second-look arthroscopy at one year during which a biopsy was harvested for histologic analysis of the reconstructed cartilage. Of these, 9 patients (Genzyme technique) also had hardware removed. The mean follow-up of the 22 patients was 36 months. At follow-up, all patients but one were satisfied with their results. With regards to the clinical results evaluated using the American Foot and Ankle Society score, an average of 90.5 was obtained at 24 months, while at 36 months the average score (19 patients) was 94.0 (range 54–100). During follow-up arthroscopy, 4 patients had mild fibrosis and 1 patient required regularization of flap overgrowth causing pain. The clinical and histological results have confirmed the validity of the surgical technique utilized with no subjective nor objective complications. An improvement of the symptoms and of articular function has also been observed: laboratory data confirmed the histological appearance of the newly formed hyaline cartilage in all cases evaluated. Immunohistochemistry showed a positive staining for collagen type II located in the extracellular matrix and in the chondrocytes in the healthy and transplanted cartilage biopsies. All the specimens studied were also positive for proteoglycans expression as was the Alcian blue reaction, which highlighted the presence of these fundamental components of a cartilaginous matrix.