Physician burnout and its consequences have been recognized as increasingly prevalent and important issues for both organizations and individuals involved in healthcare delivery. The purpose of this study was to describe and compare the patterns of self-reported wellness in orthopaedic surgeons and trainees from multiple nations with varying health systems. A cross-sectional survey of 774 orthopaedic surgeons and trainees in five countries (Australia, Canada, New Zealand, UK, and USA) was conducted in 2019. Respondents were asked to complete the Mayo Clinic Well-Being Index and the Stanford Professional Fulfillment Index in addition to 31 personal/demographic questions and 27 employment-related questions via an anonymous online survey.Aims
Methods
To determine the biomechanical effect of increasing scaphoid malunion and scaphoid non-union on carpal kinematics during dynamic wrist motion using an active wrist motion simulator. Seven cadaveric upper extremities underwent active wrist flexion and extension in a custom motion wrist simulator with scaphoid kinematics being captured with respect to the distal radius. A three-stage protocol of progressive simulated malunion severity was performed (intact, 10° malunion, 20° malunion) with data analyzed from 45° wrist flexion to 45° wrist extension. Scaphoid malunions were modelled by creating successive volar wedge osteotomies and fixating the resultant scaphoid fragments with 0.062 Kirshner wires. At the completion of malunion motion trials, a scaphoid non-union trial was carried out by removing surgical fixation to observe motion differences from the malunion trials. Motion of the scaphoid, lunate, capitate, and trapezium-trapezoid was recorded and analyzed using active optical trackers. Increasing scaphoid malunion severity did not significantly affect scaphoid or trapezium-trapezoid motion (p>0.05); however, it did significantly alter lunate motion (p<0.001). Increasing malunion severity resulted in progressive lunate extension across wrist motion (Intact – Mal 10: mean dif. = 7.1° ± 1.6, p<0.05; Intact – Mal 20: mean dif. = 10.2° ± 2.0, p<0.05;) although this change was not as great as the difference seen during non-union trials (native – non-union: mean dif. = 13.8° ± 3.7, p<0.05). In this in-vitro model, increasing scaphoid malunion severity was associated with progressive extension of the lunate in all wrist positions. The clinical significance of this motion change is yet to be elucidated, but this model serves as a basis for understanding the kinematic consequences of scaphoid malunion deformities.
Numerous surgical techniques have been proposed and described in the treatment of Kienbock's disease. The objective of this systematic review was to assess the current evidence and trends in the management of Lichtman Stages IIIA and IIIB. We performed a literature search using the Medline, Embase, and Cochrane databases to identify studies evaluating treatment outcomes in Stages IIIA and IIIB of Lichtman's Classification. We included studies between 2008 and 2018, and studies with Sackett levels one to four inclusively. We excluded studies that included skeletally immature patients, non-English papers, other hand diseases, and those without evidence of significance testing. We evaluated the quality of each included study using the Structured Effectiveness Quality Evaluation Scale (SEQES) and our outcomes of interest included Pain, ROM, Grip Strength, and Functionality. We identified 1489 titles from the various databases. 83 papers remained after the subtraction of duplicates and abstract review. Following full-text review of the remaining 83 papers, 43 more studies were excluded and 40 papers met the criteria for SEQES assessment. There were six low-quality papers and 34 moderate-quality papers. Meta-analysis was not possible due to the variability in how outcomes were reported. A variety of surgical options were presented including decompressions, joint-levelling procedures, revascularization techniques, fusions, arthroplasty and novel combinations of these techniques. These were mainly retrospective and/or cohort studies. Most of these papers had small sample sizes and required further studies. Nonetheless, all of these treatment modalities were shown to offer pain relief and some degree of return of function ranging from minimal improvement to return to normal daily functions. This systematic review has revealed a significant weakness in the literature and a lack of strong evidence in the treatment of Stages IIIA and IIIB of Kienbock's disease. The unknown etiology of this disease and its rarity make it very difficult to produce randomized controlled trials and appropriately-sized studies. As such, there is currently insufficient data to determine a superior treatment modality from another. Furthermore, the fact that most, if not all, surgical interventions produced positive results may also be a consequence of publication bias.
Scaphoid fractures are a common injury accounting for more than 58% of all carpal bone fractures(1,2). Biomechanical studies have suggested that scaphoid mal-union may lead to altered carpal contact mechanics causing decreased motion, pain and arthritis(1,2). The severity of mal-union required to cause deleterious effects has yet to be established. This limits the ability to define surgical indications or impacts on prevention of posttraumatic arthritis. Computed tomography has been shown to be a useful in determining the 3D implications of altered bony alignment on the joint contact mechanics of surrounding joints. The objective of this study was to report mid-term follow-up image-based outcomes of patients with scaphoid mal-unions to determine the extent to which arthritic changes and decreased joint space is present after a minimum of 4 years following fracture. Participants (n=14) who had previously presented with a mal-united scaphoid fracture (indicated by a Height:Length Ratio >0.6) between November 2005 and November 2013 were identified and contacted. A short-arm thumb spica case was used to treat X patients and X required surgical management. Baseline and follow-up CT images, were performed with the wrist in radial deviation and positioned such that the long axis of the scaphoid was perpendicular to the axis of the scanner. Three-dimensional inter-bone distance (joint space), a measure of joint congruency and 3D alignment, was quantified from reconstructed CT bone models of the distal radius, scaphoid, lunate, capitate, trapezium and trapezoid from both the baseline and follow-up scans(3). Repeated measures ANOVA was used to detect differences in contact area (mm2) between baseline and follow-up CT's for the radioscaphoid, scaphocapitate and scaphotrapezium-trapezoid joint. The average age of participants was 43.1 years (16–64 years old). There was significant loss of joint space, indicated by a greater joint contact area 3–4 years post fracture, between baseline and follow-up reconstruction models, at the scaphocapitate (mean difference: 21.5±146mm2, p=0.007) and scaphotrapezoid joints (mean difference: 18.4 ±28.6mm2, 0.042). Significant differences in the measured contact area was not found for the radioscaphoid (0.153) and scaphotrapezium joints (0.72). Additionally, the scaphoid, qualitatively, appears to track in the vorsal direction in the majority of patients following fracture. Increased joint contact area in the scaphocapitate and scaphotrapezoid joint 3–4 years following fracture results from decreased 3D joint space and overall narrowing. Joint space narrowing, while not significantly different for all joints examined, was reduced for all joints surrounding the scaphoid. Decreased joint space and increased contact area detectable within this short interval might be suggestive of a trajectory for developing arthritis in the longer term, and illustrates the potential value of these measures for early detection. Longer term follow-up and correlation to clinical outcomes are needed to determine the importance of early joint space narrowing, and to identify those most at risk.
Long term outcomes of distal radius fractures have rarely been studied prospectively and do not traditionally extend past 1–2 years following treatment. The purpose of this study was to describe the long term patient-rated pain and disability of patients after a distal radius fracture and to also determine the differences in patient reported pain and disability after one year following injury and at the long term follow-up. Patients who had previously participated in a prospective study, where baseline and standardised one year follow-up were performed following a distal radius fracture were contact to participate in this long term follow-up (LTFU) study. Eligible cases that consented agreed to evaluation which included being sent a package in the mail contain a letter of information and questionnaire. Baseline demographic data including age and sex, as well as date of fracture, mechanism of fall and attending physician information was obtained for all participating subjects. Patient rated pain and disability was measured at baseline, one year and at long-term follow-up using the Patient Rated Wrist Evaluation (PRWE). Patients were categorised as having had a worse outcome (compared to one year follow-up PRWE scores) if their LTFU PRWE score increased by 5 points, having no change in status (if their score changed by four or less points) or improved if their LTFU PRWE score decreased by 5 or more points. Sixty-five patients (17 male, 48 female) with an average age of 57 years at the time of injury and 67 years at follow-up were included in the study. The mean length of follow-up was 10.7 (± 5.8) years (range: 3–19 years). Overall, 85% of patients reported having no change or had less patient-reported pain and disability (PRWE) at their long-term follow-up compared to their one year PRWE scores. As well, one year PRWE scores were found to be predictive (20.2%) of the variability in long term PRWE score (p=0.001). This study provided data on a cohort of prospectively followed patients with a distal radius fracture, approximately 10 years after injury. This data may be useful to clinicians and therapists who are interested in determining the long term effects of this frequently occurring upper extremity fracture. The results of this study indicate that after 10 years following a distal radius fracture, 85% of patients will have good outcomes. The results of this study also indicate that majority of cases, if patients have a low amount of pain and disability at one year, then these outcomes will also be true approximately 10 years later.
Limited information is available regarding the functional outcomes of radial head fractures managed with open reduction and internal fixation (ORIF). The purpose of this study was to determine the functional outcomes of radial head fractures treated with ORIF. Fifty-two patients, with a mean age of 4412 years, who were treated with radial head ORIF were evaluated at a mean of 4.42.4 years. Thirty were isolated radial head fractures (Group A), 13 (Group B) were associated with a complex fracture-dislocation (terrible triad variants), and 5 (Group C) were associated with a proximal ulnar fracture (Monteggia/trans-olecranon variants). Fourty-four were partial articular fractures and 8 were complete articular fractures. Outcomes were assessed with physical and radiographic examination, and validated self-reported questionnaires.Purpose
Method
This cohort study reports outcomes of patients with comminuted radial head fractures treated with a modular radial head arthroplasty. Twenty-six patients (mean age = fifty-four) were prospectively followed at three, six, twelve, and twenty-four months following surgery. Patient satisfaction with this procedure was high. This data indicates favorable results using a modular radial head arthroplasty with rapid improvement in disability and physical impairment occurring in all measures in the first six months and further improvement in most patients up to two years. The Mayo Elbow Performance Index was at one year and eighty-four at two years. To investigate the objective and subjective outcomes of unreconstructable radial head fractures treated with a modular radial head arthroplasty. This data indicates favorable results using a modular radial head arthroplasty with improvement in satisfaction, disability and physical impairment occurring in all measures in the first six-months and continued improvement for up to two-years. Comminuted radial head fractures are challenging to treat with ORIF. Radial head arthroplasty is an alternative treatment that compares favorably to reported results for ORIF of similar fractures. Significant improvements were noted over time in self-reported and measured impairments as follows: ASES pain: baseline = 30/50, two years = 15/50; ASES function: baseline = 5/36, two years 27/36; MEPI one year = eighty-two, two years = eight-four. At two years, little impairment was observed compared to the unaffected side in grip 22/26 kg, flexion 141°/145°, or pronation 74°/79°. Moderate differences were noted in extension 28°/2°, supination 57°/72° and strength measures: extension = 29/38, flexion = 31/40, supination = 43/65, pronation = 37/53 (Nm). Patient satisfaction was high at three months (9/10) and remained high at two years (9.1/10). A cohort of twenty-six patients (seventeen female, mean age fifty-four) with non-reconstructable radial head fractures was treated using a modular metallic radial head arthroplasty (Evolve TM, Wright Medical Technology, Arlington, TN). All patients were prospectively followed at three, six, twelve and twenty-four months. Self-report of limb function, general health, measured ROM and isometric strength were assessed by an independent observer. Funding Institution research foundation support was provided by Wright Medical Technology. None of the authors received direct compensation for commercial products related to the content of this study.