After aseptic loosening, dislocation of hip prosthesis is the most frequent complication in patients with hip arthroplasty, with annual cost of treatment from 70 to 100 million dollar (American estimation) In the periods between January 2000 and December 2005, 359 hip arthroplasty surgeries were done in orthopedic clinic of Torretti Hospital of Ancona – Italy as following: 279 cases of primary hip arthroplasty and 80 cases of revision hip prosthesis with rate of dislocation: Total number of cases are 24 from 359 (6.6%) cases as following: 15 cases (5,3%) after primary hip arthroplasty and with rate of dislocation 9 cases (11,2%) after revision hip arthroplasty, all the dislocated case are followed retrospectively as following: We analyzed our data according to the followings Primary pathologies in the dislocated hip cases Models of prosthesis that have been implanted (ABG II, Doufit SAMO, Ancafit Cremascoli) Causes of dislocation and time of dislocation regarding the date of operation Types of treatment used in dislocated casesIntroduction
Materials and methods
Primary human fibroblasts were seeded on collagen I membranes with aligned fibres (# 40133) with and randomly arranged fibres (# 40153). Cell proliferation was evaluated at 4, 8 and 12 days by spectrophotometry. Membrane sections were studied by immunohistochemistry and by confocal microscope on day 12 of culture. The middle third of the patellar tendon was lesioned bilaterally in 10 adult male New Zealand White rabbits and repaired on the right side by a graft (# 40133). The contralateral tendon was left untreated and served as control. Animals were euthanized 1 or 6 months after surgery and the tendon grafts subjected to histological examination.
Cells were homogeneously distributed, with a more marked orientation along the main membrane axis in batch 40133 than in 40153. The in vivo study showed that cell orientation and differentiation in the scaffold with aligned fibres was satisfactory, with decreased cellularity, good integration with the surrounding tissue and crimp formation. Inflammatory reaction or excessive implant neovascularization were never observed.
The present study analysed the clinical outcome and the histological characteristics of membrane-seeded autolo-gous chondrocytes implantation at 24 month after surgery for chondral defects. A prospectic study was performed on fifteen patients (8 males and 7 females, mean age 38 years) suffering from cartilage lesions of the knee (12 cases) and the ankle (3 case). The patients underwent matrix-induced autologous chondrocyte implantation (MACI). Clinical outcomes were assessed by revised IKDC form and Knee Osteoarthritis and Injury Outcome Score (KOOS). At 12 months after implantation biopsy samples were obtained from 7 patients. The specimens were analysed by histochemistry, immunohistochemistry (ICRS visual histological assessment scale) and histomorphometry (Quantimet 500+). Improvement 12 months after operation was found subjectively (39.7 to 57.9) and in articular function levels. IKDC scores showed marked improvement at 12 months (88% A/B). 90% of biopsies showed: smooth articular surface, hyaline-like matrix, columnar cell distribution, viable cells, normal subchondral bone, tide-mark. All sections were clearly stained with safranin-O, alcian blue, and revealed immunoreaction for S-100 protein, chondroitin-S and type II collagen. Clinical improvement and hyaline-like appearance of the repair tissue indicate that MACI implantation is an effective technique for the treatment of cartilage lesions.
The present investigation was undertaken to explore the possible association between lower limb torsional abnormalities and some disorders of the knee, such as patellofemoral malalignment and Osgood-Schlatter disease. Four groups of patients were subjected to clinical, radiographic and CT evaluation: 20 male and 20 female asymptomatic subjects, 27 girls affected with patellofemoral malalignment and 21 boys affected with Osgood-Schlatter disease. With CT femoral anteversion, patellar congruence angle, patellar tilt angle, condylomalleolar angle, the distance between the anterior tibial tuberosity and the trochlear groove and external tibial rotation angle could be measured. Statistical analysis was carried out by ANOVA and Student’s t-test. In the patellofemoral malalignment group, the femoral anteversion and rotation were significantly greater than in comparison the other symptomatic or control groups. In the Osgood-Schlatter group the condylomalleolar angle and tibial rotation angle were higher than in controls. Several authors have demonstrated the influence of changes in the torsional alignment of the leg on the genesis of many disorders of the knee. The present CT study, employing a method that is the most accurate to measure lower limb rotation, documents a close association between patellofemoral malalignment and femoral rotation and between Osgood-Schlatter disease and increased external tibial torsion. These associations does not imply a cause-effect relationship; nevertheless, it is conceivable that these torsional abnormalities, probably in conjunction with other factors, can be predisposing mechanical factors for the onset of anterior knee pain related to patellofemoral malalignment or Osgood-Schlatter disease.
The use of autologous grafts for vertebral arthrodesis is associated with a number of complications that should be properly considered: pain at the harvesting site, increased blood loss, prolonged surgical time, and additional scar. Moreover, in many cases, the amount of autologous bone is insufficient. Novel materials, either natural or synthetic, are therefore needed to be used as bone substitutes in vertebral surgery. For this purpose, a number of synthetic materials have been developed, their characteristics varying considerably in terms of ostoinduction, osteoconduction, biomecanics, and cost. In particular, clinical and experimental studies have highlighted the potential of demineralized bone matrix (DBM), alone or in combination with autologous grafts, and of collagenic mineralized matrix (Healos). Aim of this study was the evaluation of the clinical value of these materials in vertebral surgery. We have analyzed a series of 60 patients who underwent vertebral arthrodesis by the addition of either DBM (30 cases) or Healos (30 cases). Bone substitutes were used both in posterior-lateral arthrodeses (on one side, the other being treated with autologous graft as a control) and in intersomatic arthrodeses in association with titanium or carbon fiber scaffolds. Patients were followed-up for a minimum 1-year interval, and evaluated with regard to clinical (Oswestry score, SF-36) and radiographic (static and dynamic X-rays, spiral CT, MRI) parameters. The area of arthrodesis was independently analyzed by three independent observers. Clinical results showed the reliability of both materials as a tool for a stable arthrodesis, since they were found to be able to achieve results comparable to those obtained with autologous grafts in the control arm of the study.
Bone marrow would represent a useful source of cells for skeletal tissue engineering. Marrow mesenchymal stem cells (MSC) can generate cartilage, bone and fat. The differentiation of this multipotent population into fibroblast, chondrocytes or osteoblasts can be inducted in vitro by the addiction of growth factor like bFGF, TGFA7, BMP-2. In order to evaluate the possibility of inducing cell differentiation by cell-matrix interaction, we studied the in vitro behaviour of human MSC cultured on various scaffolds. Bone marrow was obtained during surgery for pelvic fractures or hip arthroplasty. MSC were isolated by cell sorting (CD45/glycophorin A micromagnetic beads), expanded and characterised by FACSCalibur flow cytometry system (CD3, CD34, CD14, CD45, CD90 and CD105). Then cells were grown for 30 days on different scaffolds: type I and type II collagen, type I collagen + hydroxyapatite. Histochemical (alcian blue, safranin O, ALP and von Kossa stains), immunohistochemical (type I e II collagen, chondroitin sulphate, osteonectin), histomorphometric (area %) and spectrophotometric (cell proliferation, PG synthesis, ALP activity) analyses were performed after 15 and 30 days of culture. Among the scaffolds tested in the present study, we observed a great variability in terms of MSC adhesion and proliferation. MSC grown on type II collagen differentiated into cells expressing chondrocytes markers (S100, collagen II, chondroitin-S). MSC grown on type I collagen + hydroxyapatite differentiated into osteoblast-like cells. These data evidenced that MSC-matrix interaction can influence phenotype expression, cell adhesion and growth rate.
The material most widely used in orthopaedics is hydroxyapatite (HA), anyway many differences are still present between synthetic HA and biological HA. The aim of this study was to compare adhesion, proliferation and differentiation of human osteoblast-like cells on hydroxyapatite discs with different porosity and on plastic cultures. Human osteoblast-like cells were isolated from 4 young patients (mean age 24.5 years old), treated with collagenase and maintained in Dulbecco’s modified essential medium-10% fetal calf serum. Cells were plated on hydroxyapatite discs with 3 different porosities (35%, 35–55% e 55%) and on plastic cultures used as control. The proliferation was determined by the MTT colorimetric method, and alkaline phosphatase (ALP) activity was measured by a spettrophotometric method. Type I collagen and osteonectin production were demonstrated with fluorescence microscopy and osteoblast adhesion was studied by scanning electron microscopic (SEM) analysis. Results were analysed by one-way analysis of variance (ANOVA). Osteoblast proliferation on HA was three- to six-fold lower then on plastic. At 28 days, 2141 (± 350) cells/well grew on the most porous disks, with highly significant differences from controls. The ALP production was 2–3 fold lower on HA than on plastic. In the most porous disks, the mean ALP activity was of 2.95 (± 0.07) UI/well after 28 days, higher than in the other two groups. The type-I collagen and the osteonectin fluorescence reaction evidenced a cytoplasmic and a matrix labeling on HA at different porosities. SEM analysis showed osteoblasts with a flattened morphology and only few of them were metabolic active. At 21 and 28 days, proliferation rate and ALP activity on the three HA cultures were significantly different (p<
0.05). A decrease in cell population and increased ALP activity were observed on the most porous material, and high proliferation and poor differentiation rates on the less porous disks.