header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 119 - 119
1 Mar 2006
Reddy V Miles A Cunningham J Ghedduzzi S Henman P
Full Access

Aim: To compare the biomechanical properties of paired flexible steel and titanium nails in simulated transverse fractures of synthetic composite bones.

Methods: Steel and titanium nails (3mm diameter) were individually used in pairs of divergent configuration to study torsion, cantilever bending (anteroposterior and lateral), and axial loading properties of adolescent synthetic composite tibiae model (10mm diameter). Properties of the intact bone, simulated fresh fracture with nails and simulated healing fracture with nails were studied. Instron 4303 universal testing machine was used to study axial loading. Applying fibreglass layers around the fracture with epoxy resin simulated fracture healing with callus formation.

Results: Steel and titanium nails maintained good alignment of fracture fragments. Both the nails demonstrated very poor stability of fresh fractures in torsion loading. Steel nail/bone construct was 57% stronger than Titanium nail/bone construct under similar testing conditions during fracture healing (p< 0.05) but still < 50% stiffness of intact bone. In bending tests, both types of nails showed < 10% of the stiffness of intact bone in fresh fractures (p< 0.05). Mediolateral stiffness was better than anteroposterior stiffness. In fracture healing, the bending stiffness of both types of nail/bone constructs was > 50% that of intact bone. Axial stiffness of both nails was more than bending or torsion stiffness implying that fracture fragments play a significant role in the stability of the fracture.

Although both types of nail/bone constructs demonstrated similar stiffness results in fresh and healing fractures, steel nails performance was statistically better than Titanium nails in all loading tests (p< 0.05).

Conclusion: Fractures fixed with either type of flexible nails should be supplemented with splints or plaster for a short duration until callus formation. Flexible nails should be used with caution in comminuted fractures, over weight patients since they may not provide adequate stability or allow early mobilization. Additional research with cadaver bones may provide further insight into the performance of the flexible nails.