Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 300 - 300
1 Mar 2013
Patel A Yaffe M Talati R Meisles J Ghate R Stulberg SD
Full Access

Introduction

Proper femoral component rotation is a crucial factor in successful total knee arthroplasty (TKA). Femoral component rotation using anatomic landmarks has traditionally been established by referencing the transepicondylar axis (TEA), Whiteside's Line (WSL), or the posterior condylar axis (PCA). TEA is thought to best approximate the flexion-axis of the knee, however WSL or PCA are commonly used as surrogates of the TEA in the operating room due to their accessibility. The relationship of these anatomic landmarks has been previously investigated in anatomic and computed tomography based studies. The relatively few knees evaluated have limited the power of these studies. Patient Specific Instrumentation (PSI) utilizing magnetic resonance imaging (MRI) is an emerging technology in total knee replacement. The purpose of this study was to use magnetic resonance imaging based planning software to assess the relationship of WSL and PCA to the TEA and to determine if the relationships were influenced by the magnitude of the pre-operative coronal deformity.

Methods

Five hundred sixty total knee replacements were performed in 510 patients utilizing PSI. The Materialize preoperative planning software was utilized to determine the rotational relationships of TEA, WSL, and PCA (Fig 1). The coronal plane deformity of each patient was also evaluated utilizing the MRI-based imaging and planning software.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 409 - 410
1 Nov 2011
Stulberg S Moen T Ghate R Salaz N
Full Access

Originally introduced in 1997, porous tantalum is an attractive alternative metal for orthopaedic implants because of its unique mechanical properties. Porous tantalum has been used in numerous types of orthopaedic implants, including acetabular cups in total hip arthroplasty. The early clinical results from porous tantalum acetabular cups have been promising. The purpose of this study was to evaluate the presence of bone ingrowth and the incidence of osteolytic lesions in the acetabular cup -at 10 year follow up – in patients who had a total hip arthroplasty with a monoblock porous tantalum acetabular cup.

50 consecutive patients underwent a total hip arthroplasty with a monoblock porous tantalum acetabular component. All patients had computed tomography at an average of 10 years of follow-up. The computed tomography scan used a standard, validated protocol to evaluate bony ingrowth in the cup and for the presence of osteolysis.

The computed tomographic scans showed evidence of extensive bony ingrowth, and no evidence of osteolysis.

This study reports the 10-year results of a monoblock porous tantalum acetabular cup. This is the first study to evaluate a porous tantalum acetabular cup with the use of computed tomography. These results show that a porous tantalum monoblock cup has excellent bony ingrowth and no evidence osteolysis at 10 year follow-up. These results suggest that porous tantalum is an attractive material for implantation in young, active patients.