Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 108 - 108
1 Jan 2016
Day J MacDonald D Arnholt C Williams G Getz C Kraay M Rimnac C Kurtz S
Full Access

INTRODUCTION

Mechanically assisted crevice corrosion of taper interfaces was raised as a concern in total hip arthroplasty (THA) approximately 20 years ago (Gilbert 1993). In total shoulder replacement, however, comparatively little is known about the prevalence of fretting assisted crevice corrosion or the biomechanical and patient factors that influence this phenomenon. Given the comparatively lower loading experienced in the shoulder compared to the hip, we asked: (1) What is the prevalence of fretting assisted corrosion in modular total shoulder replacements, and (2) What patient and implant factors are associated with corrosion?

METHODS

Modular components were collected from 48 revision shoulder arthroplasties as part of a multi-center, IRB approved retrieval program. For anatomic shoulders, this included 40 humeral heads, 32 stems and four taper adapters from seven manufacturers. For reverse shoulders, there were eight complete sets of retrieved components from three manufacturers. The components were predominantly revised for instability, loosening and pain. Anatomical shoulders were implanted for an average of 3.1 years (st dev 3.8; range 0.1–14.5). Reverse shoulders were implanted for an average of 2.2 years (st dev 0.7; range 1.3–3.3). Modular components were disassembled and examined for taper damage. The modular junctions were scored for fretting corrosion using a semi-quantitative four-point scoring system adapted from Goldberg, et al. (Goldberg, 2002, Higgs 2013). The scoring system criteria was adapted from Goldberg and Higgs which is comprised of a one to four grading system (with one indicating little-to-no fretting/corrosion and four indicating extensive fretting/corrosion). The component alloy composition was determined using the manufacturer's laser markings and verified by x-ray fluorescence. Patient age, gender, hand dominance, alloy, flexural rigidity of the trunnion and taper geometry were assessed independently as predictors for fretting corrosion.