Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 226 - 228
20 Apr 2022
Hiranaka T Suda Y Saitoh A Koide M Tanaka A Arimoto A Fujishiro T Okamoto K


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 343 - 343
1 Dec 2013
Hayashi S Fujishiro T Hashimoto S Kanzaki N Nishiyama T Kurosaka M
Full Access

Introduction:

Implant dislocations are often caused by implant or bone impingement, and less impingement is critical to prevent dislocations. Several reports demonstrated that greater femoral offset delayed bony impingement and led to an improved range of motion (ROM) after THA. Therefore, an increase in the femoral offset may improve ROM and decrease implant dislocation. The aim of this study was to clarify the effect of the femoral offset in avoiding component or bony impingement after total hip arthroplasty (THA).

Methods:

Seventy-eight patients underwent THA with a Pinnacle cup and Summit stem (DePuy). Intraoperative kinematic analysis was performed with a navigation system, which was used to obtain intraoperative range of motion (ROM) measurements during trial insertion of stems of 2 different offset lengths with the same head size. Further, ROM was also measured after actual component insertion.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 174 - 174
1 Mar 2013
Fujishiro T Nishiyama T Hayashi S Kanzaki N Hashimoto S Shibanuma N Kurosaka M
Full Access

Background

The cementless acetabular component fixed with several screws is one of the most widely used approaches in THA. These screws rely on contact pressure and the resultant friction between the screw head and the cup to control translation and angulation of the prosthesis. However, intraoperative change of the acetabular component alignment during screw fixation should be hardly detected. Acetabular component alignment can be assessed using computer-assisted navigation systems with realtime adjustments for component position. The purpose of the current study was to evaluate intraoperative change of acetabular component alignment during screw fixation using navigation system.

Patients and Methods

Primary THAs were performed in 74 hips using CT based fluoroscopic matching navigation system (VectorVision, BrainLAB). The patients were 18 men and 56 women with a mean age of 64.4 years (range, 47–78 years) at operation. Intraoperative acetabular component inclination and anteversion were measured at the time of press-fit, and after screw fixation using the cup verification function in the system. Mean of the absolute difference between at the time of press-fit and after screw fixation was evaluated as intraoperative change of acetabular component. We measured the distance from the center of the femoral head to the inter-teardrop line as a horizontal and vertical reference on the postoperative radiograph. The number of screws was also investigated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 54 - 54
1 Sep 2012
Fujishiro T Nishiyama T Hayashi S Kanzaki N Takebe K Kurosaka M
Full Access

Background

Total hip arthroplasty for Crowe type IV developmental dysplasia of the hip is a technically demanding procedure. Restoration of the anatomical hip center frequently requires limb lengthening in excess of 4 cm and increases the risk of neurologic traction injury. However, it can be difficult to predict potential leg length change, especially in total hip arthroplasty for Crowe type IV developmental hip dysplasia. The purpose of the present study was to better define features that might aid in the preoperative prediction of leg length change in THAs with subtrochanteric femoral shortening osteotomy for Crowe type IV developmental dysplasia of the hip.

Patients and Methods

Primary total hip arthroplasties with subtrochanteric femoral shortening osteotomy were performed in 70 hips for the treatment of Crowe type IV developmental hip dysplasia. The patients were subdivided into two groups with or without iliofemoral osteoarthritis. Leg length change after surgery was measured radiographically by subtracting the amount of resection of the femur from the amount of distraction of the greater trochanter. Preoperative passive hip motion was retrospectively reviewed from medical records and defined as either higher or lower motion groups.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 427 - 427
1 Sep 2012
Moojen DJ Van Hellemondt G Vogely C Burger B Walenkamp G Tulp N Schreurs W De Meulemeester F Schot C Fujishiro T Schouls L Bauer T Dhert W
Full Access

Background

Both from experimental studies and the large arthroplasty registries there is evidence that bacteria are more often involved in implant loosening then is currently reported. To further elucidate this potential problem, the current study investigated the hypothesis that many total hip arthroplasty revisions, classified as aseptic, are in fact low-grade infections missed with routine diagnostics.

Methods

In 7 Dutch hospitals, 176 patients with the preoperative diagnosis of aseptic loosening of their total hip arthroplasty were enrolled. From each patient, the preoperative history was obtained. During surgery, between 14 and 20 tissue samples were obtained for routine culture, pathology analysis and broad range 16S rRNA PCR with reverse line blot hybridization (PCR-RLB). Samples were taken from the (neo-) capsule and acetabular and femoral interface tissue. Cultures were performed locally according to similar protocols. One specialized pathologist, blinded for all other results, analyzed all pathology samples. The PCR-RLB analysis was performed centrally, using a technique previously validated for orthopedic use. Patients were classified as not infected, suspect for infection or infected, according to strict, predefined criteria. Each patient had a follow-up visit after 1 year.