Total shoulder arthroplasty (TSA) is the current standard treatment for severe osteoarthritis of the glenohumeral joint [1]. Often, severe arthritis is associated with abnormal glenoid version or excessive posterior wear [2]. Reaming to correct more than 15° of retroversion back to neutral is not ideal as it may remove an excessive amount of the outer cortical support and medialize the glenoid component [3]. Two recent glenoid components with posterior augments—wedged and stepped—have been designed to address excessive posterior wear and to allow glenoid component neutralization. Hypothetically, these augmented glenoid designs lessen the complications associated with using a standard glenoid component in cases of shoulder osteoarthritis with excessive posterior wear. We set out to determine which implant type (standard, stepped, or wedged) corrects retroversion while removing the least amount of bone in glenoids with posterior erosion. Serial shoulder CT scans were obtained from 121 patients before total shoulder arthroplasty. These were then classified using the Walch Classification. We produced 3D models of the scapula from CT scans for 10 subjects that were classified as B2 using the software MIMICS (Materialise, Belgium). Each of these 10 glenoid subjects were then virtually implanted with standard, stepped, and wedged glenoid components (Fig 1). The volume of surgical bone removed and maximum reaming depth were calculated for each design and for each subject. In addition, the area of the backside of the glenoid in contact with cancellous versus cortical bone was calculated for each glenoid design and for each subject (Fig 2). ANOVA testing was performed.Introduction:
Methods:
Component and limb alignment (especially varus >3°) have been associated with soft-tissue imbalance, increased polyethylene wear, and tibial tray subsidence. However, not all clinical outcome studies have found significant correlation between tibial varus and revision surgery. While the link between limb alignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. In this study, we analyzed the effect of limb alignment and tibial tray alignment on the risk for bone damage and subsequent risk for tray loosening. A finite element model of knee arthroplasty previously validated with in vitro cadaver testing was used. Models of four subjects were constructed with tibial resections simulating a 0°, 3°, 5°, and 7° varus alignment with respect to the mechanical axis of the tibia and the tray implanted at the corresponding angles. Tibial tray orientation was simulated without change in limb alignment (i.e. maintaining the mechanical axis of the knee at 0°) and with limb alignment ranging from 3° valgus to 7° varus (Fig 1). A static load equivalent to three times the bodyweight of the subject was applied in line with the mechanical knee axis. Relative motion between the tibial tray and tibial bone was calculated. Elements with an equivalent von Mises strain >0.4% were selected and assigned an elastic modulus of 5 MPa to reflect damaged bone. Simulation was repeated and after-damage micromotion recorded.Introduction
Methods
Wear and polyethylene damage have been implicated in up to 22% of revision surgeries after unicompartmental knee replacement. Two major design rationales to reduce this rate involve either geometry and/or material strategies. Geometric options involve highly congruent mobile bearings with large contact areas; or moderately conforming fixed bearings to prevent bearing dislocation and reduce back-side wear, while material changes involve use of highly crosslinked polyethylene. This study was designed to determine if a highly crosslinked fixed-bearing design would increase wear resistance. Gravimetric wear rates were measured for two unicompartmental implant designs: Oxford unicompartmental (Biomet) and Triathlon X3 PKR (Stryker) on a knee wear simulator (AMTI) using the ISO-recommended standard. The Oxford design had a highly conforming mobile bearing of compression molded Polyethylene (Arcom). The Triathlon PKR had a moderately conforming fixed bearing of sequentially crosslinked Polyethylene (X3). A finite element model of the AMTI wear simulation was constructed to replicate experimental conditions and to compute wear. This approach was validated using experimental results from previous studies. The wear coefficient obtained previously for radiation-sterilized low crosslinked polyethylene was used to predict wear in Oxford components. The wear coefficient obtained for highly crosslinked polyethylene was used to predict wear in Triathlon X3 PKR components. To study the effect design and polyethylene crosslinking, wear rates were computed for each design using both wear coefficients.INTRODUCTION
METHODS
Knee contact force during activities after total knee arthroplasty (TKA) is very important, since it directly affects component wear and implant loosening. While several computational models have predicted knee contact force, the reports vary widely based on the type of modeling approach and the assumptions made in the model. The knee is a complex joint, with three compartments of which stability is governed primarily by soft tissues. Multiple muscles control knee motion with antagonistic co-contraction and redundant actions, which adds to the difficulty of accurate dynamic modeling. For accurate clinically relevant predictions a subject-specific approach is necessary to account for inter-patient variability. Data were collected from 3 patients who received custom TKA tibial prostheses instrumented with force transducers and a telemetry system. Knee contact forces were measured during squatting, which was performed up to a knee flexion angle that was possible without discomfort (range, 80–120°). Skin marker-based video motion analysis was used to record knee kinematics. Preoperative CT scans were reconstructed to extract tibiofemoral bone geometry using MIMICS (Materialise, Belgium). Subject-specific musculoskeletal models of dynamic squatting were generated in a commercial software program (LifeMOD, LifeModeler, USA). Contact was modeled between tibiofemoral and patellofemoral articular surfaces and between the quadriceps and trochlear groove to simulate tendon wrapping. Knee ligaments were modeled with nonlinear springs: the attachments of these ligaments were adjusted to subject-specific anatomic landmarks and material properties were assigned from published reports.INTRODUCTION
METHODS
Aligning the tibial tray is a critical step in total knee arthroplasty (TKA). Malalignment, (especially in varus) has been associated with failure and revision surgery. While the link between varus malalignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. We therefore constructed and validated a finite element model of knee arthroplasty to test the hypothesis that varus malalignment of the tibial tray would increase the risk of tray subsidence.Introduction
Methods
Reverse total shoulder arthroplasty (R-TSA) converts the glenohumeral joint into a ball-and-socket articulation by implanting a metal glenosphere on the glenoid and a concave polyethylene articulation in the humerus. This design increases the stability of the shoulder and is indicated for the treatment of end-stage shoulder arthropathy with significant rotator cuff deficiency. To minimise the risk of loosening, the glenosphere is often medialised (to keep the center of rotation within glenoid bone). Since bone grafting under the glenosphere is recommended as an alternate method to medialisation, we studied the effect of glenosphere placement on the biomechanical efficiency of the deltoid. A musculoskeletal model of the shoulder was constructed using BodySIM (LifeModeler, Inc, San Clemente, CA). The model simulated active dynamic glenohumeral and scapulothoracic abduction in a shoulder implanted with an R-TSA. Muscle forces and gleno-humeral contact forces were computed during shoulder abduction. The following conditions were simulated:
R-TSA with the center of rotation unchanged; medialisation of center of rotation by 16 mm; medialisation reduced to 10 mm with a 6-mm bone graft; and inferior placement of R-TSA by 4 mm to preserve soft-tissue tension and prevent scapular notching. We validated our model by comparing peak glenohumeral contact forces (85% body weight) with previously reported in vivo measurements (Bergmann, J Biomech 2007). Inferior placement of the glenosphere component increased the mechanical advantage of deltoid muscle at 90° abduction by 25%. Medialisation of the glenosphere had little effect on deltoid forces. Reducing the medialisation (to 10 mm, by simulating the effect of a bone graft under the glenosphere) also did not change the mechanical advantage relative to full medialisation (16 mm). One disadvantage of R-TSA is that a center of shoulder rotation outside (lateral) to the glenoid increases the tendency for glenosphere loosening. Unfortunately, medialisation of the glenosphere reduces the tension on the deltoid, increases the incidence of prosthetic impingement resulting in scapular notching, and produces a shoulder contour that is cosmetically undesirable. To counter these disadvantages, reduced medialisation is proposed by bone grafting under the glenosphere and placing the glenosphere inferiorly. Our model indicates that the major mechanical advantage of the R-TSA is provided by the inferior placement of the glenosphere, which increases the moment arm of the deltoid muscle. On the other hand, the extent of glenosphere medialisation had an insignificant effect. These results support the use of reduced medialisation and bone grafting in the presence of other advantages, such as reduced notching and maintenance of infraspinatus tension and improved shoulder contour.