Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Full Access

Purpose

The prevalence of focal chondral lesions reported inthe literature during knee arhroscopy can be as high as 63%. Of these, more than half are either grade III or grade IV lesions (Outerbridge). Full thickness cartilage lesions ranging from 2cm2 to 10cm2 are the most challenging to treat. To goal of this study was to evaluate clinical outcomes of pain, function and quality of life, along with radiological outcomes of cartilage repair using microfracture, autologous minced cartilage and polymeric scaffold.

Method

A cohort of thirty-eight patients with Outerbridge grade III or IV cartilage injuries larger than 2cm2 in the knee's femoral condyle, trochlea or patella were prospectively folowed since 2008. They were all treated with microfracture, fresh minced autologous cartilage grafting and a polymeric scaffold technique through mini-arthrotomy of the knee. Autografts and scaffolds were secured to subchondral bone using fibrin glue and tran-sosseous resorbable sutures. Patients were evaluated pre and postoperatively using VAS scores for pain, WOMAC and IKDC scores for knee function and SF-36 questionnaire for quality of life. Clinical evaluations were done by physical examination, and imaging was done using X-Rays, MRI and arthro-CT


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 253 - 253
1 Jul 2011
Lavigne M Farhadnia P Vendittoli P
Full Access

Purpose: Clinical studies still show significant variability in offset and leg length reconstruction after 28mmTHA. Precise restoration of hip biomechanics is important since it reduces wear and improves stability, abductor function and patient satisfaction. There is a tendency to increase offset and leg length to ensure stability of 28mmTHA. This may not be needed with the more stable LDHTHA and hip resurfacing implants, therefore potentially improving the precision of the hip reconstruction. The aim of this study was to verify this assumption.

Method: Leg length and femoral offset were measured on standardized digital radiographs with a computer software in 254 patients (49 HR, 74 LDHTHA, 132 28mmTHA) with unilateral hip involvement and compared to the normal contralateral side.

Results: Femoral offset was increased in 72% of 28mmTHA (mean +3.3mm), 56% of LDHTHA (mean +1.0mm) and 8% of HR (mean −3.2mm) (intergroup differences p< 0.05). The mean LLI was greater after 28mmTHA (+2,29mm) vs. (−0.45mm for LDHTHA and −1.8mm for HR). The percentage of patients with increased leg length > 4mm was greater for 28mmTHA (11%) compared to LDHTHA (2.7%) and HR (2%).

Conclusion: The stability afforded by the larger head of LDHTHA reduces the surgeon’s tendency to increased leg length and femoral offset to avoid instability as during 28mmTHA. In addition, compared to HR, LDHTHA allows more precise restoration of equal leg length and femoral offset in patient with greater pre operative deformities (low femoral offset and LLI > 1cm). LDHTHA may represent the most precise method of hip joint reconstruction.