header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 220 - 220
1 Jul 2008
Yu J Eisenstein N Cui Y Fairbank JCT Roberts S Urban JPG
Full Access

Introduction: Elastin is a structural protein forming a highly organised network in the annulus and nucleus of the intervertebral disc (IVD). It appears important in maintaining annulus structure as it is densely located in the interlamellar space and forms cross-bridges between lamellae. Here we have investigated elastin fibre organisation in degenerate discs and compared it to that seen in normal human and bovine discs.

Methods: Human lumbar IVD were obtained from consented patients undergoing surgery either for disc degeneration, tumour or trauma. The disc segments were collected from operating theatre and graded. A radial profile of the specimen was dissected and snap-frozen. Sections of 20μm in thickness were cut with a cryostat microtome and mounted on slides. To visualize elastin fibres, sections were digested with hyaluronidase after fixation with 10% of formalin. Elastin fibres were immunostained and fibre organisation mapped.

Results: In degenerate disc, the elastin fibre network appeared sparse and disorganised in comparison to that seen in non-degenerate human or in bovine discs in which elastin fibres are well organised. In addition, in degenerate discs the elastin fibres appear fragmented. Fragmentation of the elastin network within lamellae of the annulus in particular increased with both degeneration grade and with age.

Discussion: The loss of elastic network integrity observed in degenerate discs could contribute to loss of annulus integrity and affect disc mechanical properties adversely. Furthermore, our initial results have suggested fragmented elastin degradation products could upregulate MMP expression by disc cells thus stimulating a degenerative cascade.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 329 - 329
1 Nov 2002
Disney S Fairbank JCT Pynsent PB
Full Access

The Oswestry Disability Index has become one of the major condition specific outcome measures for spinal problems. The original version has been in use since the late 1970’s. It was modified in 1985 by a MRC Working Group. Innumerable papers have cited the ODI and many of these have used the ODI as an outcome. It has been translated into at least five other languages.

The understanding of the validation and behaviour of outcome measures has expanded considerably in the 22 years since the ODI was first published. Many studies have been done on the ODI in conjunction with other spinal outcome measures. This material has now been brought together on a new website (www.merc.wlv.ac.uk/ODI/index.htm). This includes an interactive version of the ODI for self-assessment (which can be downloaded), a large bibliography and frequently asked questions. The site also contains some of the translations and other English versions.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 338 - 338
1 Nov 2002
Meir AR Jones DA McNally DS Urban JPG Fairbank. JCT
Full Access

Objective: To measure intradiscal pressures in scoliotic spines to further understand the role of mechanical forces in the development of scoliosis.

Design: Pressure readings were obtained in consented patients with ethical approval. A needle mounted pressure transducer was introduced into the disc during routine anterior scoliosis surgery.

Subjects: Ten human scoliotic discs from three patients.

Outcome measures: Intradiscal pressure profiles.

Results: Nuclear hydrostatic pressures varied from 0.2 to 0.6 MPa. The mean nuclear pressures for the three spines were 0.27+0.12, 0.35+0.06 and 0.47+0.12 MPa.

High stress, non- hydrostatic regions were consistently recorded in the concave annulus.

Conclusions: Nuclear pressures in these scoliotic patients were significantly higher than the 0.12 and 0.15 MPa recorded previously in non-scoliotic recumbent individuals1;2 suggesting that spinal loading is abnormal in scoliosis.