While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee. The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant).Background
Methods
The extension facet angle (EFA) of the medial compartment of the knee has been implicated as a potential mechanical cause for anteromedial knee osteoarthritis. We developed a novel sagittal plane flexion osteotomy of the medial tibiofemoral compartment. We then performed a cadaveric study to study the effect of the osteotomy on the intra-articular knee pressures under axial load mimicking the stance phase of gait. A Tekscan K400 pressure sensor was inserted submeniscally into the joint and 700N applied using an Instron machine. A topographical map of the pressure areas was then assessed pre- and post-osteotomy for the 10 cadaveric knees specimens. We found that the intra-articular pressures are greatest in the anteromedial compartment in the native knee and after the osteotomy the area of highest pressure moves posterolaterally spread over a greater surface area. We conclude that a flexion osteotomy of the medial compartment reduces intra-articular knee pressures concentrated anteromedially in full extension and may be beneficial in patients with an elevated EFA with anteromedial symptoms.
Femorotibial malalignment exceeding ±3° is a recognised contributor of early mechanical failure after total knee replacement (TKR). The angle between the mechanical and anatomical axes of the femur remains the best guide to restore alignment. We investigated where the femoral head lies relative to the pelvis and how its position varies with respect to recognised demographic and anatomic parameters. We have tested the hypothesis of the senior author that the position of the centre of the femoral head varies very little, and if its location can be identified, it could serve to outline the mechanical axis of the femur without the need for sophisticated imaging. The anteroposterior standing, plain pelvic radiographs of 150 patients with unilateral total hip replacements were retrospectively reviewed. All patients had Tönnis grade 0 or 1 arthritis on the non-operated hip joint. All radiographs were obtained according to a standardised protocol. Using the known diameter of the prosthetic head for calibration, the perpendicular distance from the centre of the femoral head of the non-operated hip to the centre of pubic symphysis was measured with use of TraumaCad software. Anatomic parameters, including, but not limited to, the diameter of the intact femoral head, were also measured. Demographic data (gender, age, height, weight) were retrieved from our database.Introduction
Patients & Methods
This paper reports the angle between the EF and the horizontal (the extension facet angle- EFA) in normal knees and in knees with early AMOA.
A sagittal image at the midpoint of the femoral condyle was used to determine the EFA.
There is an association between an increased EFA (ie a steeper EF) and MRI evidence of AMOA. Although a causal link is not proven, we speculate that a steeper angle increases the duration of loading on the EF in stance and tibio-femoral interface shear. This may initiate cartilage breakdown.
This paper reports the angle between the EF and the horizontal (the extension facet angle - EFA) in normal knees and in knees with early AMOA.
A sagittal image at the midpoint of the femoral condyle was used to determine the EFA. Repeat measurements were taken by two observers.
There is an association between an increased EFA (ie a steeper EF) and MRI evidence of AMOA. Although a causal link is not proven, we speculate that a steeper angle increases the duration of loading on the EF in stance and tibio-femoral interface shear. This may initiate cartilage breakdown.