Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 13 - 13
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Faber KJ Langohr GD
Full Access

Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should influence stem selection, but have yet to be assessed in response to the diametral (i.e., thickness) sizing of short stem humeral implants.

Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized short-stemmed humeral implants, as well as 2mm ‘oversized’ implants. Stem sizing conditions were randomized to left and right humeral pairs. Following implantation, an anteroposterior radiograph was taken of each stem and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of 90º forward flexion loading. At regular intervals during loading, stem subsidence and micromotion were assessed using a validated system of two optical markers attached to the stem and humeral pot (accuracy of <15µm).

The metaphyseal fill ratio did not differ significantly between the oversized and standard stems (0.50±0.06 vs 0.50±0.10; P = 0.997, Power = 0.05); however, the diaphyseal fill ratio did (0.52±0.06 vs 0.45±0.07; P < 0.001, Power = 1.0). Neither fill ratio correlated significantly with stem subsidence or micromotion. Stem subsidence and micromotion were found to plateau following 400 cycles of loading. Oversizing stem thickness prevented implant head-back contact in all but one specimen with the least dense metaphyseal bone, while standard sizing only yielded incomplete head-back contact in the two subjects with the densest bone. Oversized stems subsided significantly less than their standard counterparts (standard: 1.4±0.6mm, oversized: 0.5±0.5mm; P = 0.018, Power = 0.748;), and resulted in slightly more micromotion (standard: 169±59µm, oversized: 187±52µm, P = 0.506, Power = 0.094,).

Short stem diametral sizing (i.e., thickness) has an impact on stem subsidence and micromotion following humeral arthroplasty. In both cases, the resulting three-dimensional stem micromotion exceeded, the 150µm limit suggested for bone ingrowth, although that limit was derived from a uniaxial assessment. Though not statistically significant, the increased stem micromotion associated with stem oversizing may in-part be attributed to over-compacting the cancellous bed during broaching, which creates a denser, potentially smoother, interface, though this influence requires further assessment. The findings of the present investigation highlight the importance of proper short stem diametral sizing, as even a relatively small, 2mm, increase can negatively impact the subsidence and micromotion of the stem-bone construct. Future work should focus on developing tools and methods to support surgeons in what is currently a subjective process of stem selection.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 80 - 80
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Langohr GD Faber KJ
Full Access

Shoulder arthroplasty is effective at restoring function and relieving pain in patients suffering from glenohumeral arthritis; however, cortex thinning has been significantly associated with larger press-fit stems (fill ratio = 0.57 vs 0.48; P = 0.013)1. Additionally, excessively stiff implant-bone constructs are considered undesirable, as high initial stiffness of rigid fracture fixation implants has been related to premature loosening and an ultimate failure of the implant-bone interface2. Consequently, one objective which has driven the evolution of humeral stem design has been the reduction of stress-shielding induced bone resorption; this in-part has led to the introduction of short stems, which rely on metaphyseal fixation. However, the selection of short stem diametral (i.e., thickness) sizing remains subjective, and its impact on the resulting stem-bone construct stiffness has yet to be quantified.

Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized and 2mm ‘oversized’ short-stemmed implants. Standard stem sizing was based on a haptic assessment of stem and broach stability per typical surgical practice. Anteroposterior radiographs were taken, and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of compressive loading representing 90º forward flexion to simulate postoperative seating. Following this, a custom 3D printed metal implant adapter was affixed to the stem, which allowed for compressive loading in-line with the stem axis (Fig.1). Each stem was then forced to subside by 5mm at a rate of 1mm/min, from which the compressive stiffness of the stem-bone construct was assessed. The bone-implant construct stiffness was quantified as the slope of the linear portion of the resulting force-displacement curves.

The metaphyseal and diaphyseal fill ratios were 0.50±0.10 and 0.45±0.07 for the standard sized stems and 0.50±0.06 and 0.52±0.06 for the oversized stems, respectively. Neither was found to correlate significantly with the stem-bone construct stiffness measure (metaphysis: P = 0.259, diaphysis: P = 0.529); however, the diaphyseal fill ratio was significantly different between standard and oversized stems (P < 0.001, Power = 1.0). Increasing the stem size by 2mm had a significant impact on the stiffness of the stem-bone construct (P = 0.003, Power = 0.971; Fig.2). Stem oversizing yielded a construct stiffness of −741±243N/mm; more than double that of the standard stems, which was −334±120N/mm.

The fill ratios reported in the present investigation match well with those of a finite element assessment of oversizing short humeral stems3. This work complements that investigation's conclusion, that small reductions in diaphyseal fill ratio may reduce the likelihood of stress shielding, by also demonstrating that oversizing stems by 2mm dramatically increases the stiffness of the resulting implant-bone construct, as stiffer implants have been associated with decreased bone stimulus4 and premature loosening2. The present findings suggest that even a small, 2mm, variation in the thickness of short stem humeral components can have a marked influence on the resulting stiffness of the implant-bone construct. This highlights the need for more objective intraoperative methods for selecting stem size to provide guidelines for appropriate diametral sizing.

For any figures or tables, please contact the authors directly.


Introduction

Lateralizing the center of rotation (COR) of reverse total shoulder arthroplasty (rTSA) has the potential to increase functional outcomes of the procedure, namely adduction range of motion (ROM). However, increased torque at the bone-implant interface as a result of lateralization may provoke early implant loosening, especially in situations where two, rather than four, fixation screws are used. The aim of this study was to utilize finite element (FE) models to investigate the effects of lateralization and the number of fixation screws on micromotion and adduction ROM.

Methods

Four patient-specific scapular geometries were developed from CT data in 3D Slicer using a semi-automatic threshold technique. A generic glenoid component including the baseplate, a lateralization spacer, and four fixation screws was modelled as a monoblock. Screws were simplified as 4.5 mm diameter cylinders. The glenoid of each scapula was virtually reamed after which the glenoid component was placed. Models were meshed with quadratic tetrahedral elements with an edge length of 1.3 mm.

The baseplate and lateralization spacer were assigned titanium material properties (E = 113.8 GPa and ν = 0.34). Screws were also assigned titanium material properties with a corrected elastic modulus (56.7 GPa) to account for omitted thread geometry. Cortical bone was assigned an elastic modulus of 17.5 GPa and Poisson's ratio of 0.3. Cancellous bone material properties in the region of the glenoid were assigned on an element-by-element basis using previously established equations to convert Hounsfield Units from the CT data to density and subsequently to elastic modulus [1].

Fixed displacement boundary conditions were applied to the medial border of each scapula. Contact was simulated as frictional (μ = 0.8) between bone and screws and frictionless between bone and baseplate/spacer. Compressive and superiorly-oriented shear loads of 686 N were applied to the baseplate/spacer. Lateralization of the COR up to 16 mm was simulated by applying the shear load further from the glenoid surface in 4 mm increments (Fig. 1A). All lateralization levels were simulated with four and two (superior and inferior) fixation screws.

Absolute micromotion of the baseplate/spacer with respect to the glenoid surface was averaged across the back surface of the spacer and normalized to the baseline configuration considered to be 0 mm lateralization and four fixation screws. Adduction ROM was measured as the angle between the glenoid surface and the humeral stem when impingement of the humeral cup occurred (Fig. 1B).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 111 - 111
1 Feb 2017
Elwell J Athwal G Willing R
Full Access

Introduction

Reverse total shoulder arthroplasty (RTSA) can partially restore lost range of motion (ROM). Active motion restoration is largely a function of RTSA joint constraint, limiting impingement, and muscle recruitment; however, it may also be a function of implant design. The aim of this computational study was to examine the effects of implant design parameters, such as neck-shaft (N-S) angle and glenoid lateralization, on impingement-free global circumduction range of motion (GC-ROM). GC-ROM summarizes the characteristically complex, wide-ranging envelope of glenohumeral motion into a single quantity for ease of comparison.

Methods

Nine computational models were used to investigate implant parameters. The parameters examined were N-S angles of 135°, 145°, and 155° in combination with glenoid lateralizations (0, 5, and 10 mm). Static positioning of the humerus was defined by an elevation direction angle, elevation angle, and rotation. The humerus was rotated from the neutral position (0° of rotation and elevation), and then elevated in different elevation directions until impingement was detected. Abduction occurred at an elevation direction angle of 0°, while flexion and extension occurred at elevation direction angles of 90° and −90°, respectively. Elevation direction angles ranged from −180° to 180°. Elevation ranged from 0° and 180°. Rotations ranged from −45° to 90°, where negative and positive rotations represented external and internal rotation, respectively. For each rotation angle, a plot of maximum elevation in each elevation plane was created using polar coordinates (radius = elevation, angle = elevation direction). The area enclosed by the resulting points, normalized with respect to the implant with a 145° N-S angle and 5 mm lateralization, was calculated. The sum of these areas defined the GC-ROM.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 7 - 7
1 Nov 2016
Elwell J Willing R
Full Access

Failure of reverse total shoulder arthroplasty (rTSA) due to loosening of the metaglene remains a concern. The metaglene is typically affixed to the glenoid via four peripheral bone screws, and the orientations of these screws can affect the stability of the metaglene. The purpose of this finite element analysis (FEA) study was to investigate whether screw orientations should be considered on a patient-specific basis to maximise early fixation.

Three-dimensional geometries of four scapula specimens were obtained by segmenting from CT data in 3D Slicer. A metaglene and four rigidly attached 4.5 mm diameter, 18 mm long cylinders representing screws, were placed on each reamed glenoid. Each screw was placed at one of four orientations, 15° or 7.5° toward or away from the central axis of the metaglene face, while all others were held in the baseline (BL) configuration, where all screws were perpendicular to the metaglene face. Finite element models were created by meshing with linear tetrahedral elements. Material properties of titanium (E=113.8 GPa, v=0.34) were applied to the metaglene and screws. Cortical bone material properties were considered uniform (E=17.5 GPa, ν=0.3) while cancellous bone material properties were non-uniform and mapped on an element-by-element basis using CT attenuation data. The scapula was fully constrained, and a 252 N superiorly oriented shear force was applied to the inferior portion of the metaglene. Contact was modelled at bone-implant and bone-screw interfaces. Displacements of the metaglene with respect to the glenoid were measured. The orientations of each screw that minimised in-plane displacement were used for specimen-specific (SS) configurations. A global (GL) configuration was also defined based on the averages of SS orientations. FE model-predicted metaglene displacements of the SS, GL, and BL screw configurations were compared using paired t-tests.

The average in-plane metaglene displacements for the SS, GL, and BL configurations were 4.8 ± 1.2, 6.5 ± 3.7, and 5.3 ± 1.5 um, respectively. SS configurations significantly decreased displacements by −0.4 ± 0.3 um (−8.5%, p = 0.024) when compared to BL, but the difference of −1.6 ± 3.1 um (25.3%, p = 0.187) was not significant when compared to the GL configuration.

In general, the SS configurations resulted in smaller metaglene displacements than the GL configurations, however the difference was not statistically significant. In one specimen, the GL configuration resulted in abnormally large displacements. These results indicate that, while on average, patient-specific orientations won't yield significantly greater fixation than global configurations; non-patient-specific configurations can, in some cases, yield poor results. Therefore, to ensure optimal fixation for all patients, screw orientations should be considered on a patient-specific basis.