Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 189 - 189
1 Sep 2012
Harding D Loesener G Ngyuen B Blackburn D Dixon R Taylor J
Full Access

Purpose

Total disc replacement (TDR) devices have been restricted to designs with large, congruent articulations due to the limited wear properties of available materials. TDRs with more natural motion could be designed if materials were available which could resist the higher wear conditions. A novel TriLobe TDR design is self-centering and energetically stable, emulating the natural motion of the intact motion segment, but is not feasible using traditional materials due to small incongruent articulating surfaces. The objective of this study was to compare the wear properties of a medical grade polycrystalline diamond with wear properties of cobalt chrome (CoCr) and ultrahigh molecular weight polyethylene (UHMWPE) in aggressive high wear conditions.

Methods

A modified pin-on-disc, crossing-path wear test was used to measure the wear rates of PCD-on-PCD, CoCr-on-CoCr, and CoCr-on-UHMWPE. The discs were placed in the inferior position on an oscillating plate, moving in a 10mm by 5mm figure-eight pattern. Pins had an initial 11.5mm radius and were loaded at 133N normal to the disc. In a typical pin-on-disc test, a wear flat develops on the pin and the wear rate is reduced as the contact area increases. The TriLobe design uses three lobes sliding in three non-conforming lenses which prevents wear flats from developing. To approximate this condition, the fixture holding the disc was placed on an air bearing and was allowed to rock in concert with movement of the load. The test was conducted in 25% bovine serum at a speed of less than two Hertz. Two sets of each material were tested, one set to 2.0 million cycles and the other set to 14.0 million cycles. Wear rates on the rocking-discs were measured using a high resolution coordinate measuring machine because the wear in the PCD specimens was not detectable gravimetrically.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 444 - 444
1 Nov 2011
Taylor J Dixon R Hardy D Nguyen B Naylor M Schroeder D
Full Access

Statement of Purpose: Hard-on-hard bearing surfaces are finding increasing application in total hip replacements for wear reduction. Polycrystalline Diamond Compacts (PDCs) offer several potential advantages, including ultimate hardness, reduced metal ion release compared to metal-on-metal (MoM) articulations and increased strength/ toughness compared to ceramic-on-ceramic (CoC). This study investigates in-vitro wear and friction for a 28mm diamond-on-diamond (DoD) system under normal walking gait and also with distraction.

Methods: Six sets of 28mm PDC femoral heads and 28/41mm PDC acetabular liners (Dimicron, Utah) were tested on a hip simulator (AMTI, Boston). Radial clearances were 18–42 microns. Specimens were mounted anatomically with the cups superior and mounted at 45 degrees. All stations were lubricated with 37oC bovine serum diluted to 17g/l protein concentration. Components were subjected to a 3kN walking cycle (ISO14242-1) for 5 million cycles (MC). This was followed by 2MC of distraction testing with a reduced swing-phase load of 120N, an applied side force of 129N and with the abduction motion disabled. This produced approximately 0.5–0.7mm of horizontal displacement of the center of the head. The lubricant was changed and the components cleaned, dried and weighed at 0.5MC intervals.

Results: All heads and liners gained weight during each portion of the test. Potential mechanisms (still under investigation) include protein adsorption and hydration of metallic phases within the diamond compact. The weight gains were found to be somewhat reversible after drying in vacuum for extended periods (60–90 hours). However, the standard 1 hour drying cycle used for weight measurements during the test was found to be inadequate. Therefore, only the “dry weights” measured after 64–92 hours of vacuum drying at the beginning and end of each test portion were used to compute wear rates.

Overall wear rates for heads and liners for the 5MC of normal gait and the 2MC of distraction testing and for the whole 7MC. 95% confidence intervals are plotted for each set of six heads and liners. Weight changes were converted to volumetric wear using a density of 3,800kgm-3. Even after extended drying, the liners all showed small weight gains. The heads apparently wore slightly during the normal walking cycle but gained weight during the distraction cycle. Overall, the heads showed a small wear rate of 0.17±0.09mm3/MC and the liners showed a small ‘negative’ wear rate of −0.11±0.07mm3/MC. Due to the uncertainties involved in the drying procedure, it is concluded that DoD wear rates were unmeasurably low for this test. Distraction is known to increase wear rates for CoC systems [1] and might reasonably be expected to have a similar effect for DoD, due to the high elastic modulus of diamond.

However, the 2MC of distraction testing produced only small weight gains. The heads showed no evidence of ‘stripe wear’ as reported for CoC systems.

Conclusions: DoD wear rates were found to be unmeasurably low for an anatomical hip simulator test with and without distraction. Friction factors for DoD were slightly lower than for metal-on-UHMWPE.