Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 69 - 69
1 Mar 2021
Sahm F Grote VF Detsch R Kreller T Boccaccini A Bader R Jonitz-Heincke A
Full Access

Several electrical fields are known to be present in bone tissue as originally described by Fukada and Yasuda in the year 1957. Intrinsic voltages can derive from bone deformation and reversely lead to mechanical modifications, called the piezoelectric effect. This effect is used in the clinic for the treatment of bone defects by applying electric and magnetic stimulation directly to the bone supplied with an implant such as the electroinductive screw system. Through this system a sinusoidal alternating voltage with a maximum of 700 mV can be applied which leads to an electric field of 5–70 V/m in the surrounding bone. This approach is established for bone healing therapies. Despite the established clinical application of electrical stimulation in bone, the fundamental processes acting during this stimulation are still poorly understood. A better understanding of the influence of electric fields on cells involved in bone formation is important to improve therapy and clinical success.

To study the impact of electrical fields on bone cells in vitro, Ti6Al4V electrodes were designed according to the pattern of the ASNIS III s screw for a 6-well system. Osteoblasts were seeded on collagen coated coverslip and placed centred on the bottom of each well. During four weeks the cells were stimulated 3×45 min/d and metabolic and alkaline phosphatase (ALP) activity as well as gene expression of cells were analysed. Furthermore, supernatants were collected and proteins typical for bone remodelling were examined.

The electrical stimulation did not exert a significant influence on the metabolic activity and the ALP production in cells over time using these settings. Gene expression of BSP and ALP was upregulated after the first 3 days whereas OPG was increased in the second half after 14 days of electrical stimulation. Moreover, the concentration of the released proteins OPG, IL-6, DKK-1 and OPN increased when cells were cultivated under electrical stimulation. However, no changes could be seen for essential markers, like RANKL, Leptin, BMP-2, IL-1beta and TNF-alpha.

Therefore, further studies will be done with osteoblasts and osteoclasts to study bone remodelling processes under the influence of electrical fields more in detail. This study was supported by the German Research Foundation (DFG) JO 1483/1-1.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 48 - 48
1 Dec 2013
Detsch R Fey T Greil P Chen Q Boccaccini AR
Full Access

Biomaterials used in regenerative medicine should be able to support and promote the growth and repair of natural tissues. Bioactive glasses (BGs) have a great potential for applications in bone tissue engineering [1, 2]. As it is well known BGs can bond to host bone and stimulate bone cells toward osteogenesis. Silicate BGs, e.g. 45S5 Bioglass® (composition in wt.%: 45 SiO2, 6 P2O5, 24, 5 Na2O and 24.5 CaO), exhibit positive characteristics for bone engineering applications considering that reactions on the material surface induce the release of critical concentrations of soluble Si, Ca, P and Na ions, which can lead to the up regulation of different genes in osteoblastic cells, which in turn promote rapid bone formation. BGs are also increasingly investigated for their angiogenic properties.

This presentation is focused on cell behavior of osteoblast-like cells and osteoclast-like cells on BGs with varying sample geometry (including dense discs for material evaluation and coatings of highly porous Al2O3-scaffolds as an example of load-bearing implants). To obtain mechanically competent porous samples with trabecular architecture analogous to those of cancellous bone, in this study Al2O3 scaffolds were fabricated by the well-known foam replication method and coated with Bioglass® by dip coating.

The resulted geometry and porosity were proven by SEM and μCT. Originating from peripheral blood mononuclear cells formed multinucleated giant cells, i.e. osteoclast-like cells, after 3 weeks of stimulation with RANKL and M-CSF. Thus, the bioactive glass surface can be considered a promising material for bone healing, providing a surface for bone remodeling. Osteoblast-like cells and bone marrow stromal cells were seeded on dense bioactive glass substrates and coatings showing an initial inhibited cell attachment but later a strong osteogenic differentiation. Additionally, cell attachment and differentiation studies were carried out by staining cytoskeleton and measuring specific alkaline phosphatase activity. In this context, 45S5 bioactive glass surfaces can be considered a highly promising material for bone tissue regeneration, providing very fast kinetics for bone-like hydroxyapatite formation (mineralization). Our examinations revealed good results in vitro for cell seeding efficacy, cell attachment, viability, proliferation and cell penetration onto dense and porous Bioglass®-coated scaffolds.

Recent in vivo investigations [3] have revealed also the angiogenic potential of bioactive glass both in particulate form and as 3D scaffolds confirming the high potential of BGs for bone regeneration strategies at different scales. Implant surfaces based on bioactive glasses offer new opportunities to develop these advanced biomaterials for the next generation of implantable devices and tissue scaffolds with desired tissue-implant interaction.